Skip to main content

// Long-term Safety Studies

BARIK

Development and testing of an extended Hoek-Brown material model to account for anisotropic strength behavior in the application of integrity criteria for crystalline host rocks

The research project BARIK aims to develop and test an extended three-dimensional Hoek-Brown material model capable of considering anisotropic strength behavior, specifically in a rock mass intersected by multiple fractures. The goal is to formulate the boundary condition in a way that adequately accounts for the strength-reducing properties of the respective fracture system during the integrity assessment. The new material model (BARIK material model) will be implemented and tested in two different computer codes. The use of two computer codes allows for the identification and evaluation of inaccuracies arising from the use of different codes. Using the BARIK material model, it will be examined whether the current formulation and quantification of the dilatancy criterion for crystalline host rocks is sufficient, or whether changes or specifications regarding the consideration of anisotropic strength behavior need to be made. In calculating the effective stress state, the Biot coefficient will also be used as a hydro-mechanical coupling parameter in the fractured rock. The project will be carried out in close collaboration with the Technical University of Bergakademie Freiberg.

Contact

Research & Development
info@bge-technology.de


Short Infos

Runtime: 2021 - 2024

Client:
Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz (BMUV) vertreten durch das Karlsruher Institut für Technologie, beauftragter Projektträger Karlsruhe PTKA

Funding Code:
02E11890A

Partner:
Technischen Universität Bergakademie Freiberg (TUBAF), Deutschland

Publications

// Poster

Anisotropes Stoffmodell für Kristallingestein auf Basis von Hoek-Brown unter Berücksichtigung von bis zu drei Kluftsystemen

Author(s): Rocio Paola León Vargas, Max Friedel, Alireza Hassanzadegan, Heinz Konietzki, Michael Rahmig, Fabian Weber

51. Geomechanik-Kolloquium am 18. November 2022 in Freiberg

Language: Deutsch

León Vargas R. P.; Friedel M.; Hassanzadegan A.; Konietzki H.; Rahmig M.; Weber F. (2022): Anisotropes Stoffmodell für Kristallingestein auf Basis von Hoek-Brown unter Berücksichtigung von bis zu drei Kluftsystemen. BARIK: Development and testing of an extended Hoek-Brown material model to account for anisotropic strength behavior in the application of integrity criteria for crystalline host rocks. BGE TECHNOLOGY GmbH (BGE TEC).

18.11.2022

BARIK

Download