

Gesellschaft für Anlagenund Reaktorsicherheit (GRS) mbH

AISKRISTALL

DBE-Vorhaben

"Abdichtung von Wegsamkeiten in Salzformationen mit kristallisierenden Evaporitmineralen"

GRS-Untersuchungen

"Geochemische und geotechnische Arbeiten zur Auswahl und Charakterisierung von geeigneten Salzmischungen"

Abschlussbericht

08/2005

Projektlaufzeit:7/02 bis 12/2004Status:Dezember 2004Bearbeiter:H. Kull

Förderkennzeichen:02 S 8112GRS – Vertrags - Nr.:2671Abrechnungsnummer:420300

Vorwort

Zielsetzung des FuE-Projekt 02 S 8112 (AISKRISTALL) der Deutschen Gesellschaft zum Bau und Betrieb von Endlagern /DBE/ war die Entwicklung eines "arteigenen Konstruktionswerkstoffes" als Alternative zum Salzbeton (M2) für Salzformationen.

Das Arbeitskonzept basiert auf den Erkenntnissen des von der GRS im Rahmen des Projektes FuE-Projektes 02 E 9047 (Selbstverheilender Salzversatz) entwickelten und patentierten Verfahrens.

Die GRS hat die DBE im Projektzeitraum Juli 2002 bis Dezember 2004 bei der Suche nach geeigneten Materialmischungen für einen arteigenen Konstruktionswerkstoff beraten und im Auftrag der DBE Indexuntersuchungen an Baustoffprüfkörpern durchgeführt.

Der vorliegende Bericht gibt einen Überblick über die durchgeführten Untersuchungen. Die Einzelergebnisse der Indexuntersuchungen liegen als gesonderter Anlagenband vor.

Zusammenfassung

Von den untersuchten AISKRISTALL – Materialien erfüllen mehrere Mischungen die praktischen und die technischen Anforderungen, die für Verschlüssen hinsichtlich Dichtigkeit und Festigkeit an einen Konstruktionswerkstoff gestellt werden.

- Gemäß DBE, erfüllen alle Index-Mischungen das Kriterium der Pumpfähigkeit (das Material ist über einen Zeitraum von mindestens fünf Stunden fließfähig);
- > Das Kriterium der Dichtigkeit von 10⁻¹⁷m² wird von mehreren Mischungen erfüllt;
- Einzelne Salzmischungen weisen hohe Festigkeiten auf, die aber geringer als Steinsalz sind.

Hervorzuheben ist, das die untersuchten Prüfkörper mit Zusätzen von SCHIEFERMEHL und MIKROSILIKA eine hohe Dichtigkeit gegenüber Gas aufweisen. Auch mit Kieserit als Basismaterial wurde eine hohe hydraulische Dichtung erzielt. TALK kann als Zuschlagstoff ausgeschlossenen werden.

Fast alle untersuchten AISKRISTALL - Mischungen entwickeln im eingespannten Zustand während der Verfestigung einen anhaltenden positiven Kristallisationsdruck. Die Festigkeit des fertigen Produktes liegt nur unwesentlich unter der von Steinsalz. Damit verfügt AISKRISTALL auch über die Eigenschaften, die von einem mechanischen Widerlager erwartet werden. Ein "Schrumpfungseffekt" tritt zu Beginn jeder Verfestigung ein.

Die Temperaturentwicklung während des Abbindezeitraumes liegt mit maximal 80°C oberhalb von dem von einem Salzbeton M2.

Die verwendeten Komponenten von Basismaterial und Zuschlagstoff sind handelsüblich und damit ausreichend verfügbar. Bei Verwendung von Haldenmaterial bzw. untertage anfallendem Salzgrus ist der betriebswirtschaftliche Einsatz gewährleistet.

Inhalt

Vorwort		I
Zusamm	enfassung	II
Abbildun	igsverzeichnis	V
Tabellen	verzeichnis	VIII
Anlagen	verzeichnis	IX
1	Einleitung	1
2	Anforderungskriterien / DBE	2
3	Versuchsdurchführung	3
3.1	EQ3/6-Rechnungen	
3.2	Auswahl von geeigneten Salzmischungen	
3.2.1	Material und Versuchslösungen	
3.2.2	Kennwerte von Ausgangsmaterialien	9
3.2.2.1	Siebanalysen	10
3.2.2.2	Geochemie und Mineralogie	10
3.2.3	Rezepturen – Probenherstellung / DBE	13
3.2.4	Kaloriemetrische Messungen	15
3.3	Permeabilitätsmessungen	17
3.3.1	Theorie	20
3.3.2	Ergebnis der Permeabilitätsmessungen	21
3.4	Kristallisationsdruckmessungen	
3.4.1	Messverfahren	
3.4.2	Versuchsablauf	
3.4.2.1	Vorgehensweise beim Ausbau der fertigen Prüfkörper	
3.4.2.2	Bilddokumentation vom Ausbau der Prüfkörper M03 und M04	
3.4.3	Ergebnisse der Kristallisationsdruckmessungen	
3.4.3.1	Übersicht (Materialien, Versuchsbedingungen –ergebnissen)	

Einzelergebnisse	. 32
Diskussion der Kristallisationsdruckmessungen	. 42
Geotechnischen Untersuchungen	. 44
Probenpräparation	. 44
Einaxiale Druckfestigkeit	. 45
Ergebnisse	. 46
Statischer Elastizitätsmodul und Querdehnungszahl (Poissonzahl)	. 48
Ergebnisse	. 49
Spaltzugfestigkeit	. 50
Ergebnisse	. 50
Triaxiale Festigkeit und Dilatanzgrenze	. 51
Ergebnisse	. 52
Kriechversuche	. 53
Tabellarische Zusammenfassung der geotechnischen Ergebnisse	. 54
Interpretation	. 57
Literatur	. 58
	. 59
	Einzelergebnisse

Abbildungsverzeichnis

- Abb. 3-3: Von DBE wurden für die Indexuntersuchungen vorzugsweise Salzmischungen von Magnesiumsulfat, wasserfrei mit Massenanteilen zwischen 30 % und 40 % eingesetzt /ENG/. Halit wurde als inerter Füllstoff und zur Regulierung der beim Abbinden sich entwickelnden hohen Temperaturen in Massenanteilen von 40 bis 60 % zugemischt. Der Lösungsanteil an IP21-Lösung (Magnesiumchloridgesättigte Lösung) lag dabei stets unterhalb eines theoretischen Lösungsüberschusses.6

- Abb. 3-7: Adiabatische Temperaturmessungen an Salzmischungen mit MgSO₄ und Kieserit als Bindemittelkomponente im Vergleich zum Salzbeton.......15

- Abb. 3-9 Schematischer Aufbau einer eingesetzte Reaktionszelle (Typ Heinemann). 17
- Abb. 3-11: Explosionsansicht der Teile der Kristallisationsdruckmesszelle.........26

Abb. 3-16: 3. Schritt; Bemusterung der Stirnfäche des Prüfkörpers hinsichtlich Schrumpfungserscheinungen; danach Ermittlung des "Los-Brech-Momentes". ... 30

- Abb. 3-17:
 4. Schritt Ausdrücken der Probe nachdem das "Los-Brech-Moment"

 bestimmt wurde.
 30

ungefiltert.	35
Abb. 3-23:	Proben M03 - Kristallisationsdruckkurve
Abb. 3-24:	Proben M04 - Kristallisationsdruckkurve
Abb. 3-25:	: Proben M05 - Kristallisationsdruckkurve
Abb. 3-26:	: Proben M06 - Kristallisationsdruckkurve
Abb. 3-27:	Proben M07 - Kristallisationsdruckkurve
Abb. 3-28:	Proben M08a – Kristallisationsdruckkurve; Probe geflutet
Abb. 3-29:	Proben M08b – Kristallisationsdruckkurve; Probe geflutet 40
Abb. 3-30:	Proben M09 - Kristallisationsdruckkurve
Abb. 3-31:	Proben M10 - Kristallisationsdruckkurve
Abb. 3-32:	Proben M11 - Kristallisationsdruckkurve
Abb. 3-33 Der Durch angepasst	Die Präparation der Prüfkörper erfolgte auf der Drehbank (Foto links). Imesser wird durch Abdrehen der Länge der angelieferten Probe (Foto rechts)44
Abb. 3-34: (DBE P101	Foto eines Prüfkörpers von der Referenzmischung mit Kieserit 0018m.jpg)45

Abb. 3-22: Proben M01 und M02 - axiale und radiale Kristallisationsdrücke

Tabellenverzeichnis

Tabelle 3-1:	Zusammensetzung, Dichte, molare Masse und molares Volumen
ausgewäh	Iter Evaporitminerale (Dichte und molares Volumen bei Raumtemperatur
und Atmos	sphärendruck); (Quelle ENG / DBE)
Tabelle 3-2:	Eingesetzte Materialkomponenten und Lösungen
Tabelle 3-3.	Permeshilitäten k 23
Taballa 2 4:	Kristellisetionadrughvorgusha Vorgushahadingungan 22
Tabelle 3-4.	
	Freehnisses der Kristelligstigen druckresser
Tabelle 3-5:	Ergebnisse der Kristallisationsdruckmessungen
.	
Tabelle 3-6: Er	gebnisse der Bruchfestigsuntersuchungen
Tabelle 3-7:	Zusammenstellung der Ergebnisse zum statischen E-Modul und
Poissonza	hl
Tabelle 3-8:	Spaltzugfestigkeit
Tabelle 3-9:	Zusammenstellung der Ergebnisse zum statischen E-Modul mit
Belastung	spfad
Tabelle 3-10:	Zusammenstellung der Ergebnisse zum Dilatanzverhalten
Tabelle 3-11:	Dynamische Parameter Probe AIS-353
	,

Anlagenverzeichnis

Anlage 1-	Kalibrationsprotokolle der verwendeten BURSTER - Kraftaufnehmer	60
Anlage 2- (1975)	Kristallisationsdruck (p) eines Einkristalls in Pascal (Pa) nach Wink (Mitteilung ENG)	der 62
Anlage 3:	Technisches Merkblatt ESTA Kieserit ,fein' (Mitteilung ENG)	64
Anlage 4:	Technisches Merkblatt MgSO4-wasserfrei calciniert	65
Anlage 5:	Technisches Datenblatt Tonmehl Capsil 804-D100	66
Anlage 6:	Sicherheitsdatenblatt Tonmehl Capsil 804-D 100	67
Anlage 7:	Technisches Datenblatt Schiefermehl VTS Typ B0.09	68
Anlage 8:	Sicherheitsdatenblatt Schiefermehl VTS Typ B0.09	69

1 Einleitung

Für die Errichtung von geotechnischen Barrieren in Salzformationen liegen umfangreiche Kenntnisse zum chemischen, hydraulischen und mechanischen Verhalten von so unterschiedlichen Werkstoffen wie z. B. quellfähige Tone, Salzbeton, Salzgrus und Mg- und Ca-Gelen vor. Diese Stoffe müssen mit dem Salzgebirge chemisch kompatibel sein und zur Abdichtung und mechanischen Stabilisierung führen. Eine für alle Belastungsfälle ausgelegte Sicherung von so unterschiedlichen Bereichen wie Steinsalz und Carnallitit ist z. Z. noch nicht verfügbar, aber in der Entwicklung. Neuentwickelte Baustoffe wie Selbstverheilende Salzversatzmischungen (SVV) und ASIKRISTALL scheinen dafür besonders geeignet zu sein. Die hervorragende Eigenschaft beider Materialen ist die Volumenzunahme und der Wasserverbrauch bei Lösungszutritt, was automatisch zur Abdichtung führt. Der sofortige Verbrauch zutretenden Wassers schützt zudem die extrem löslichen Kalisalze zuverlässig vor Auflösung und damit die Integrität eines Dichtbauwerkes.

Im Rahmen des DBE F+E - Programms ASIKRISTALL wird ein arteigenes Verschlussmaterial auf der Basis von Magnesiumsulfat für Deponien im Salzgestein entwickelt, das im Sinne eines Konstruktionswerkstoffes als Alternative zum Salzbeton verwendet werden kann. Es baut auf den im Rahmen des vom BMBF geförderten GRS F+E - Projektes "Entwicklung eines selbstverheilenden Versatzes- SVV" 02 C 0830 Erkenntnissen auf, in dem Magnesiumsulfat (wasserfrei) als eine viel versprechende Komponente für die Herstellung einer langzeitsicheren festen Salzabdichtung gegenüber Lauge ermittelt wurde.

Im Rahmen des Arbeitsauftrages hat die GRS die DBE bei der Auswahl alternativer Mineralmischungen beraten und begleitende Indexuntersuchungen zur Ermittlung der Materialeigenschaften durchgeführt.

Im vorliegenden Bericht werden die Ergebnisse der petrophysikalischen und mechanischen Festigkeitsuntersuchungen vorgestellt.

1

2 Anforderungskriterien / DBE

Die Materialmischungen, die in Salzformationen zur Errichtung von Verschlüssen als Konstruktionswerkstoff eingesetzt werden sollen, müssen sowohl praktischen als auch technischen Anforderungen genügen. Im vorliegenden Fall waren folgende gewichtete Kriterien gefordert, die das AISKRISTALL-Material erfüllen sollte:

- > Förderbarkeit bzw. Pumpfähigkeit
- > Dichtigkeit
- > Festigkeit
- > Optimierungsmöglichkeiten

Als wesentliche praktische Anforderung muss die Förderfähigkeit bei Raumtemperatur deutlich über 5 h liegen, um die Materialmischungen untertage über längere Strecken verpumpen zu können. Dies kann durch die Bestimmung des Setzfließmaßes, der Fließzeit und der Messungen der relativen Fließgrenze sowie der Viskosität kontrolliert werden. Gewünscht wird ein niedriger Fließwinkel und ein homogener Kornaufbau der Suspension (Suspensions- bzw. Sedimentationsstabilität) und der erhärteten Mischung (keine Entmischungserscheinungen). Die Temperaturentwicklung (-erhöhung) während des Erhärtungsprozesses muss in einer vertretbaren Größenordnung (vgl. mit Salzbeton M2) liegen. Die Bildung von Überschusslösung sollte vernachlässigbar und die Erhärtungszeiten vertretbar sein.

Als technischer Aspekt wurde eine hydraulische Durchlässigkeit des Materials gegenüber Magnesiumgesättigter Lauge gefordert, die vergleichbar mit Salzbeton und kleiner als 10⁻¹⁷m² betragen sein sollte. Gleichermaßen sollte das erhärtete Material eine ausreichende Festigkeit (vergleichbar mit Steinsalz bzw. K-Mg-Evaporitgesteine) erreichen.

Unter dem Gesichtspunkt der Optimierung sind insbesondere die Hinführung der mechanischen Materialparameter zu den Kenngrößen von Steinsalz und die zeitliche Reduzierung des Schrumpfungsprozesses zu sehen. Auch sollte die Verfügbarkeit von Basismaterial und Zuschlagstoff gesichert sein und die Kosten für ihre Beschaffung betriebswirtschaftlich vertretbar sein.

3 Versuchsdurchführung

Aufbauend auf vorhandenen Erfahrungen und Erkenntnissen aus der Entwicklung von selbstverheilenden Salzmaterialien / 1 /, / 2 /, / 3 /, / 4 / hat die GRS die DBE fachtechnisch bei der Auswahl von geeigneten AISKRISTALL-Salzmischungen beraten und indikative Berechnungen mit dem Programm EQ3/6 durchgeführt. In Abstimmung mit der DBE wurden vorgesehene kaloriemetrische Messungen zur Ermittlung der Hydratationseigenschaften beim IBMB durchgeführt.

Die Zusammenstellung von Salzmischungen und die Herstellung von entsprechenden Prüfkörpern für Indexuntersuchungen erfolgten durch die DBE nach den derzeitigen Richtlinien der Qualitätsprüfung von Salzbeton / 5 /.

Im Rahmen der Indexuntersuchungen an den Prüfkörpern durch die GRS wurden ausgewählte petrophysikalische, geochemische und geotechnische Kennwerte in Laborversuche ermittelt.

3.1 EQ3/6-Rechnungen

Für die Abschätzung des Wasserverbrauches in MgSO₄-Salzmischungen in Anwesenheit von IP21-Lösung oder NaCI-Lösungen wurden orientierende geochemische Berechnungen von GRS und DBE durchgeführt.

Eine Übersicht über die Zusammensetzung, Dichte, molare Masse und molares Volumen ausgewählter Evaporitminerale (Dichte und molares Volumen bei Raumtemperatur und Atmosphärendruck) ist in **Tabelle 3-1** dargestellt (Quelle ENG / DBE).

Die Modellrechnungen bei der GRS wurden mit dem Rechenprogrammpaket EQ3/6 durchgeführt, das auch eine Bilanzierung des im System enthaltenen Wassers (freies Wasser und Kristallwasser) berücksichtigt. Dies ist insbesondere bei den verschiedenen Mineralphasen des Magnesiumsulfats erforderlich, die unterschiedlich Kristallwasseranteile aufweisen. Erreicht ein solches Mineral die Sättigung in der Lösung und wird ausgeschieden, wird der Lösung dadurch Wasser entzogen. Damit erhöht sich die Konzentration der übrigen Lösungsbestandteile, die allgemein in mol/kg H₂O angegeben werden.

Abb. 3-1: Berechnung des Wasserverbrauches (in Prozent) in Abhängigkeit von der Zusammensetzung einer MgSO₄-NaCI-KCI-Salzmischung.

In Abb. 3-1 wurde beispielhaft der Wasserverbrauch in einem System einer Salzmischung von Magnesiumsulfat, wasserfrei (MgSO₄) – Halit (NaCl) und Sylvin (KCl) berechnet, in der die Bildung der Mineralphasen Epsomit, Kainit und Kieserit unterdrückt wurde.

Der dunkelrote Bereich mit der 100% Linie für den Wasserverbrauch verdeutlicht, das bei vollständiger Vermischung das Lösungswasser vollständig gebunden werden kann und der unverbrauchte Anteil an MgSO₄ eine Reaktionsreserve bildet. Die absolute Masse an gebundenem Wasser ist dabei abhängig von der Masse des eingesetzten MgSO₄ und der Masse der Zuschlagstoffe sowie von der Art der zugegebenen Lösung, die die Bildung weiterer metastabiler Mineralphasen beeinflussen würden.

In Fällen mit vollständigem Wasserverbrauch beträgt die Volumenabnahme (Schrumpfung) des geschlossenen Systems einheitlich 4,2%.

Abb. 3-2:Bindung von NaCl / MgCl2-gesättigter Lösung bei einem zunehmendenMischungsverhältnis von Magnesiumsulfat zu Steinsalz

Abb. 3-2 zeigt die Entwicklung der Masse an Ausgangslösung (IP21 und NaCI-Lsg.), die von einem kg einer Magnesiumsulfat - Steinsalzmischung gebunden wird und im Vergleich dazu die Masse an Feststoff, die benötigt wird um 1 kg Ausgangslösung zu binden. Für die Berechnung vorgegeben ist ein Porenvolumen von 50%, das mit Lösung gesättigt ist. Die sich bei einem Mischungsverhältnis (angegeben als Molenbruch der Feststoffe) von 0,25 sich kreuzenden Graphen für IP21 weisen daraufhin, dass bei kleineren Mischungsverhältnis, d. h. bei zu wenig Magnesiumsulfat, die Lösung nicht mehr vollständig gebunden werden kann. Für NaCI-Lösung verschiebt sich dieser Grenzwert in Richtung höherer Mischungsverhältnisse, d. h. es wird mehr Magnesiumsulfat für die vollständige Bindung des Wassers benötigt. Hinsichtlich der Pumpfähigkeit bzw. der Förderbarkeit einer entsprechenden Salzmischung sind die Graphen dahingehend zu interpretieren, dass diese mit höheren Mischungsverhältnissen stark verringert wird.

Abb. 3-3: Von DBE wurden die Indexuntersuchungen vorzugsweise für Salzmischungen von Magnesiumsulfat, wasserfrei mit Massenanteilen zwischen 30 % und 40 % eingesetzt /ENG/. Halit wurde als inerter Füllstoff und zur Regulierung der beim Abbinden sich entwickelnden hohen Temperaturen in Massenanteilen von 40 bis 60 % zugemischt. IP21-Lösung (Magnesiumchloridgesättigte Der Lösungsanteil an dabei theoretischen Lösung) lag stets unterhalb eines Lösungsüberschusses.

Die theoretischen Berechnungen von GRS (Abb. 3-2) und DBE (Abb. 3-3) zeigen in Übereinstimmung, dass bei einem Magnesiumsulfatgehalt von 30 Massenprozenten nur ein Teil des MgSO₄-wasserfrei während des Erhärtungsprozesses verbraucht wird.

Tabelle 3-1:Zusammensetzung, Dichte, molare Masse und molares Volumen
ausgewählter Evaporitminerale (Dichte und molares Volumen bei
Raumtemperatur und Atmosphärendruck); (Quelle ENG / DBE).

Mineral	Mineral Chemische Zusammensetzung		Dichte	Molare	Molares
			Dicitie	Masse	Volumen
			[g/cm³]	[g/mol]	[cm³/mol]
Chloride					
Bischofit	Mg	Cl ₂ ·6H ₂ O	1,604	203,302	129,570
Carnallit	KMaCl ₃ .6H ₂ O	KCI·MaCl2·6H2O	1,609	322,456	172,580
			1,602		173,442
Halit		NaCl	2,164	58,442	27,015
Sylvin		KCI	1,990	74,551	37,524
Tachyhydrit	CaMg2Cl ₆ ·12H ₂ O	CaCl ₂ ·2MgCl ₂ ·12H ₂ O	1,667	517,588	203,780
Mg-Sulfate			I		
Kieserit	Mg	SO₄·H₂O	2,571	138,384	56,600
	MgS	O ₄ . ⁵ / ₄ H ₂ O*	2,424	142,888	58,947
	Mas	:03H2O*	2,060	174 414	83,853
			2,080		84,667
Leonhardtit	tit / Starkeyit MgSO ₄ .4H ₂ O		1,960	192,429	98,203**
Pentahydrit	MgSO ₄ ·5H ₂ O		1,900	210,445	110,760
Hexahydrit	t MgSO₄⋅6H₂O		1,723	228,460	132,580
			1,76		4.40.000
Epsomit MgSO ₄ ·7H ₂ (504•7H2O	1,677	246,476	146,800
Na-Mg-Dop	pelsalz				
Blödit / Astrakhanit	Na₂Mg(SO₄)₂·4H₂O	Na ₂ SO ₄ ·MgSO ₄ ·4H ₂ O	2,230	334,473	149,980
K-Mg-Dopp	elsalze				
Kainit	KMgClSO₄·2,75H ₂ O	KCI·MgSO ₄ ·2,75H ₂ O	2,159	248,965	115,300
Leonit	K ₂ Mg(SO ₄)2·4H ₂ O	K ₂ SO ₄ ·MgSO ₄ ·4H ₂ O	2,200	366,690	166,300
Schönit / Pic	cromerit	K ₂ SO ₄ ·MgSO ₄ ·6H ₂ O	2,030	402,720	197,500
Weitere Sul	fate	มแก่งแต่มากแก่งแก่งแก่งแก่งแก่งแก่งแก่งแก่งแก่งแก่			
Anhydrit	CaSO ₄		2,963	136,142	45,940
Gips	CaSO₄·2H₂O		2,303	172,172	74,690
Daluk III	K ₂ MgCa	l₂(SO₄)₄·2H₂O	2,765	000.040	040.400
Polynalit	K ₂ SO ₄ ·MgSO ₄ ·2CaSO ₄ ·2H ₂ O		2,78	602,943	218,100
Syngenit	K ₂ Ca(SO ₄) ₂ ·H ₂ O K ₂ SO ₄ ·CaSO ₄ ·H ₂ O		2,59 2,644	328,417	124,200

3.2 Auswahl von geeigneten Salzmischungen

3.2.1 Material und Versuchslösungen

Für AISKRISTALL wurde ein System von Materialkomponenten zusammengestellt, welches in der praktischen Anwendung vergleichbare Eigenschaften wie der Salzbeton M2 /.../ aufweisen sollte und sich weitgehend aus -in Salzformationen natürlich vorkommenden Materialien- zusammensetzt (vgl. Tabelle 3-2).

In den durchgeführten Indexuntersuchungen bildet Magnesiumsulfat (MgSO₄) in seinen verschiedenen Hydratstufen (z. B: Kieserit) die Basiskomponente, die als **Zement** oder Bindemittel bei Wasserzugabe eine feste Kornmatrix bilden kann.

Als volumenfüllender **1. Zuschlagstoff**, wurde Steinsalz (NaCI) gewählt, da dieses in großen Mengen als Salzgrus bei der Auffahrung von untertägigen Strecken anfällt und bei Zutritt von gesättigten Lösungen ein geringes Lösungspotential aufweist. Letzteres ist ein Aspekt, der im Hinblick auf die Langzeitstabilität noch näher zu betrachten ist. Als Alternative zum reinen Steinsalz wurden Salzgrus, Anhydrit (MgCO3 H₂O), Sylvin (KCI) und Carnallit (MgKCI H₂O) eingesetzt.

Entsprechend den Betonzuschlagstoffen vom Typ 1 kamen zur Beeinflussung der mechanischen Eigenschaften handelsübliche nicht - salinare Füllstoffe wie Mikrosilica, Schiefermehl, Capsil und Talk dem Gesamtsystem als stabilisierender **2. Zuschlagstoff** zur Anwendung.

Den Basiskomponenten wurden im Einzelfall **Additive** (z. B. Glauberit [MgNa*H₂O], Epsomite [MgSO4*7 H₂O]) zugesetzt, um deren Abbindeverhalten gezielt zu beeinflussen.

Organische Chemikalien oder Filteraschen waren bis auf Einzelversuche von der Anwendung in den bisherigen Indexuntersuchungen ausgeschlossen.

Zusätzlich zur Variation von Komponenten und deren Massenanteile, wurden diese fraktioniert eingesetzt. Durch Siebung wurden bestimmte Kornfraktionen ausgesondert, die - wie die Additive- das Abbindeverhalten beeinflussen. Als ,**Anmischlösungen**' wurden repräsentative natürliche Magnesium- und/oder Natriumchloridgesättigte Laugen von der Schachtanlage ASSE / Remlingen verwendet. Gesondert wurde der Einfluss von Kaliumchloridgesättigten Lösungen und nicht mineralisiertem Wasser untersucht.

Bindemittel / Zement	1. Zuschlagstoff salinar	2. Zuschlagstoff nicht salinar	Additive	Lösungen
Magnesiumsulfat, (wasserfrei)	Halit-Gewerbesalz Halit-Salzgrus Halit-Haldensalz	Schiefermehl Mikrosilica Capsil	Glauberit Epsomit	MgCl ₂ – (IP21) gesättigte Lsg.
Kieserit; (1xKristallwasser)	Anhydrit Sylvin	Talk Flugaschen		NaCI – gesättigte Lsg.
	Carnallit			

Tabelle 3-2:	Eingesetzte	Materialkomponenten	und Lösungen
--------------	-------------	---------------------	--------------

3.2.2 Kennwerte von Ausgangsmaterialien

- Kieserit, entwässert (Magnesiumsulfat, wasserfrei, calciniert, 98%) Lieferant: K+S Werk WE/Wintershall, 36266 Heringen Bestellung:Kali und Salz GmbH, Friedrich-Ebert-Str.160, 34119 Kassel
- ► Elkem Mikrosilica Grade 940 U-S,
- Schiefermehl der VTS und Schiefermehl der Stephan Schmidt Gruppe(Capsil 804-D 100)

3.2.2.1 Siebanalysen

Siebanalysen wurden an den von GRS der DBE gestellten Ausgangsmaterialien Magnesiumsulfat (wasserfrei), Sylvin und Steinsalz (Gewerbesalz) durchgeführt.

Abb. 3-4:Siebanalyse von Magnesiumsulfat (MgSO₄), wasserfrei, von Sylvin
(KCI), ohne Zusatz und von Steinsalz (NaCI), Gewerbesalz

Anmerkung: Prüfkörper mit einer gröberen Kornfraktion (Korn> 0,5mm MgSO₄) benötigen längere Zeiten, um auszuhärten, als kleiner Kornfraktionen (Korn> 0,2mm MgSO₄). Daraus wird die Notwendigkeit der Siebung/Fraktionierung abgeleitet.

3.2.2.2 Geochemie und Mineralogie

Die **chemische Analytik** wurde im Geochemielabor der GRS mittels ICP-OES (Ion Coupled Plasma Optical Emission Spectrometer) des Typs JY 50 P von ISA JOBIN YVON durchgeführt. Analysiert wurden die Elemente Ca, Fe, K, Mg und Na. Chlorid wurde argentometrisch durch potentiometrische Titration nach DIN 38405 bestimmt.

Die **Viskositäten** der eingesetzten Lösungen wurden mit einem Viskosimeter der Firma Thermo-Haake MicroVisko 2 bestimmt. Die **Dichte**bestimmung erfolgte mit einem Dichteschwinger.

Für ausgewählte Proben wurde der Mineralbestand durch röntgenographische Phasenanalyse mit einem Diffraktometer des Typs X'Pert-MPD / Firma Phillips ermittelt. Die Messung wurde an trockenen gemahlenen Pulverpräparaten im 29-Winkelbereich zwischen maximal 5° und 75° unter Verwendung einer Cu-K_{α}-Kathode durchgeführt. Die Auswertung erfolgte mit der integrierten Auswertesoftware X'Pert für Windows 1.0 auf Basis des ASTM-Standards. Bei der PC-gestützten Phasenanalyse wird die Peaklage eines Reflexes mit Standardmessungen aus der ASTM-Datei verglichen und bei Übereinstimmung als Mineralphase identifiziert.

Dünnschliffanalysen an ausreagiertem Material wurden von der DBE im eigenen Labor durchgeführt.

Abb. 3-5: Dünnschliffaufnahme einer erhärteten MgSO4-Mischung (gekreuzte Polarisatoren). In dieser Abbildung sieht man deutlich die Umwandlungsprodukte des MgSO4. In den Umwandlungsprodukten sind Kerne "unreagierten" MgSO4 eingekapselt. Die schwarzen Flächen sind selbstverständlich Halit (Gewerbesalz) und in diesem Fall das Mikrosilica (Quelle ENG).

3.2.3 Rezepturen – Probenherstellung / DBE

Die Zusammenstellung der in Tabelle 3-2 aufgeführten Komponenten zu Rezepturen wurde von DBE durchgeführt und wird im diesem Bericht nicht im Einzelnen ausgeführt.

Für die Indexuntersuchungen wurden in den Rezepturen die Kombination der Komponenten und deren Massenverhältnisse variiert. Beim qualitativen Vergleich der Untersuchungsergebnisse und deren quantitativen Einstufen sind die jeweiligen spezifischen Rezepturen zu berücksichtigen.

Abb. 3-6: (links) Anmischen / Homogenisieren der Komponenten und Lösung zu Suspensionen. (rechts) Die fließfähige Salzmischung wird zur Prüfkörperherstellung in Formen gegossen (Fotos DBE). Im Anschluss werden die fertigen Materialmischung über zwei Minuten auf dem Rütteltisch verdichtet bzw. die Luftblasen entfernt.

Das Anmischen der Komponenten einer Rezeptur erfolgte schrittweise:

- 1. Schritt Vermischen des 2. Zuschlagstoffes mit der Lösung, bis eine homogene einfache Suspension entsteht.
- 2. Schritt Vermischen des 1. Zuschlagstoffes und ggf. von Additiven mit der einfachen Suspension.

3. Schritt Zugabe des Bindemittels zur erweiterten einsatzfähigen Suspension.

Für den Mischvorgang wurde ein Labormischer mit Flügelrad verwendet. Der Mischvorgang erfolgte bei jedem Schritt über eine Zeitdauer von zwei bis drei Minuten.

Die fließfähige Mischung wurde anschließend in spezielle Formen für nachfolgende Permeabilitäts-, Kristallisationsdruck- und Festigkeitsuntersuchungen gegossen und entsprechend der Empfehlungen für die Qualitätsprüfung für Beton über 28 Tage vor den Messungen gelagert.

3.2.4 Kaloriemetrische Messungen

Kaloriemetrische Untersuchungen wurden an verschiedenen repräsentativen Salzmischungen und im Vergleich dazu an Salzbeton M2 beim IBMB durchgeführt. Die nachfolgend aufgeführten Ergebnisse entstammen Mitteilungen der DBE /ENG/, die im Rahmen der gemeinsamen Projektgespräche ausgetauscht wurden.

Abb. 3-7: Adiabatische Temperaturmessungen an Salzmischungen mit MgSO₄ und Kieserit als Bindemittelkomponente im Vergleich zum Salzbeton.

Abb. 3-7 zeigt die ersten Ergebnisse über die zu erwartende adiabatische Temperaturentwicklung in AISKRISTALL-Material. In den Salzmischungen mit einem relativ geringen Magnesiumsulfatanteil von ca. 23% steigen in den ersten 60 Stunden des Erhärtungsprozesses die Temperaturen auf annähernd 80°C auf. Unregelmäßigkeiten im Kurvenverlauf zu Beginn dieser Messungen, sind auf die sofort nach dem Anmischen auftretende Temperaturentwicklung zurückzuführen. Im Vergleich zum Salzbeton M2 liegen die Temperaturen ca. 20°C höher. Die Temperaturen von Salzmischungen mit Kieserit als Zementbasis liegen nach 100 Stunden dagegen unterhalb der Temperaturen vom Salzbeton M2. Bei einer

15

weitergehenden Interpretation der Kurven ist zu berücksichtigen, dass die Starttemperatur zwischen 20°C und 30°C schwankte.

3.3 Permeabilitätsmessungen

Die Prüfkörper für die Permeabilitätsmessungen wurden von der DBE nach demselben Verfahren hergestellt, das zur Herstellung der mechanischen Prüfkörper angewendet wurde. Als Probenbehälter kamen Reaktionsbehälter vom Typ HEINEMANN zum Einsatz, wie sie im Rahmen von GRS Kaskaden-Auslaugversuchen an Salzbetonproben eingesetzt wurden /GRS-A-3170/ (Korrosion von Salzbeton durch salinare Lösungen).

Abb. 3-8 (links): Prüf-, Messstand für Dichtigkeitstests sowie Gas- und Lösungs-Permeabilitätsmessungen. (rechts) Eingesetzte Reaktionszelle vom Typ HEINEMANN.

Abb. 3-9 Schematischer Aufbau einer eingesetzte Reaktionszelle (Typ Heinemann).

Die Auswertung der Permeabilitätsmessungen erfolgte nach dem verallgemeinerten Fließgesetz von DARCY, das für den Einphasenfluss in porösen Gesteinen gilt. Nach dem DARCY'schen Fließgesetz ist die Permeabilität (Proportionalitätsfaktor /k/) der Theorie nach ausschließlich eine Eigenschaft der Gesteinsmatrix und unabhängig vom strömenden Fluid.

Zur Ermittlung der Einphasenpermeabilität wird eine Probe einer definierten Geometrie mit einem Fluid durchströmt. Aus der Druckdifferenz am Probeneingang und -ausgang, der Fließrate, der Probengeometrie sowie der Dichte / Viskosität des Fluids wurde die Permeabilität berechnet.

Die Berechnungsvorschrift für kompressible Fluide unterscheidet sich dabei von der Berechnung der Permeabilität von inkompressiblen Phasen.

Die Gleichung für die Berechnung der Permeabilität von stationären Durchströmungsversuchen mit Lauge (inkompressible Phase) lautet:

$\mathbf{k}_{Lsg.} = \frac{q \cdot \mu \cdot l}{A \cdot \Delta p} \mathbf{k}_{Lsg.}$	Lösungspermeabilität, m ²
--	--------------------------------------

q Fließrate, $m^3 s^{-1}$

- μ dynamische Viskosität, Pa s
- *l* Probenlänge, m
- *A* Probenquerschnittsfläche, m²
- Δp Differenzdruck, Pa

Die Auswertung der mit Gas durchgeführten Durchströmungsversuche erfolgt mit dem für kompressible Phase erweiterten Gesetz von DARCY:

$$k_{s} = \frac{2 \cdot q \cdot \mu \cdot l}{A} \cdot \frac{p_{atm}}{(p_{1}^{2} - p_{atm}^{2})}$$

$$Gaspermeabilität, m^{2}$$

$$q \qquad Fließrate, m^{3} s^{-1}$$

$$\mu \qquad dynamische Viskosität, Pa s$$

$$l \qquad Probenlänge, m$$

- A Probenquerschnittsfläche, m²
- p1 Injektionsdruck, Pa
- p_{atm} Atmosphärendruck, Pa

Auftretende druckabhängige Gleitströmungseffekte in der Gasphase, die zu Abweichungen vom reinen Darcy-Fluß führen (scheinbare Permeabilität k_s), werden durch die Klinkenberg-Korrektur berücksichtigt.

$$k_g = k_\infty (1 + \frac{\alpha}{p_m})$$

 α Klinkenberg-Konstante, Pa p_m mittlerer Druck $(p_1 + p_2) / 2$, Pa

p₁; p₂ Porendrücke (Probeneingang, -ausgang), Pa

k_∞ Klinkenberg Permeabilität, m²

kg Klinkenberg korrigierte Permeabilität für kompressible Medien, m².

Aus den stationären Durchströmungsversuchen mit Gas werden die zugehörigen Permeabilitäten berechnet. Die so bestimmten scheinbaren Gaspermeabilitäten werden gegen den reziproken Wert des mittleren Drucks aufgetragen. Zur Ermittlung der Klinkenberg korrigierten Permeabilität werden die gemessenen scheinbaren Gaspermeabilitäten auf einen unendlichen mittleren Druck interpoliert. Der Schnittpunkt der Geraden mit der Permeabilitätsachse bei 1/p_m ergibt dann die Klinkenberg korrigierte Permeabilität für kompressible Medien.

Von einer Klinkenberg-Korrektur wurde in den durchgeführten Indexversuchen abgesehen, da

(A) in den verwendeten Reaktionszellen der Manteldruck nicht variiert werden konnte,

- (B) eine Veränderung der Probe nicht ausgeschlossen werden kann,
- (C) die Vergleichbarkeit zwischen den untersuchten Prüfkörpern gewährleistet ist
- (D) die ermittelte scheinbare Permeabilität den konservativen (höheren) Wert darstellt.

Im Rahmen der durchgeführten Indexuntersuchungen an den verschiedenen AISKRISTALL-Mischungen ist die Permeabilität ein wichtiger Kennwert zur Berechnung und Beurteilung der hydraulischen Durchlässigkeit zukünftiger Dichtbauwerke für Fluide. Zur besseren Vergleichbarkeit mit anderen Index-Proben, wurden die zu prüfenden Probekörper nach demselben Verfahren wie die mechanischen Prüfkörper hergestellt. Als Probenbehälter kamen Reaktionsbehälter vom Typ HEINEMANN zum Einsatz, wie sie im Rahmen von GRS KaskadenAuslaugversuchen an Salzbetonproben eingesetzt wurden /GRS-A-3170/ (Korrosion von Salzbeton durch salinare Lösungen)

3.3.1 Theorie

Im verallgemeinerten Fließgesetz nach DARCY, das für den Einphasenfluss in porösen Gesteinen gilt, wird die Permeabilität als Proportionalitätsfaktor /k/ dargestellt. Nach dem DARCY'schen Fließgesetz ist die Permeabilität der Theorie nach ausschließlich eine Eigenschaft der Gesteinsmatrix und unabhängig vom strömenden Fluid.

Im Labor wird zur Ermittlung der Einphasenpermeabilität eine Probe einer definierten Geometrie mit einem Fluid durchströmt. Aus der Druckdifferenz am Probeneingang und -ausgang, der Fließrate, der Probengeometrie sowie der Dichte / Viskosität des Fluids kann die Permeabilität berechnet werden.

Die Berechnungsvorschrift für kompressible Fluide unterscheiden sich dabei von der Berechnung der Permeabilität von inkompressiblen Phasen.

Die Gleichung für die Berechnung der Permeabilität von stationären Durchströmungsversuchen mit Lauge (**inkompressible Phase**) lautet:

$$\mathbf{k}_{Lsg.} = \frac{q \cdot \mu \cdot l}{A \cdot \Delta p}$$
 wobei

k _{Lsg.}	Lösungspermeabilität,	m²
q	Fließrate,	m ³ s ⁻¹
μ	dynamische Viskosität,	Pa s
l	Probenlänge,	m
Α	Probenquerschnittsfläche,	m ²
Δp	Differenzdruck,	Pa

Die Auswertung der mit Gas durchgeführten Durchströmungsversuche erfolgt mit dem für **kompressible Phase** erweiterten Gesetz von DARCY:

$$\mathbf{k}_{s} = \frac{2 \cdot q \cdot \mu \cdot l}{A} \cdot \frac{p_{atm}}{(p_{1}^{2} - p_{atm}^{2})} \text{ wobei}$$

k _s	scheinbare Gaspermeabilität,	m ²
q	Fließrate,	m ³ s ⁻¹
μ	dynamische Viskosität,	Pa s
1	Probenlänge,	m
А	Probenquerschnittsfläche,	m ²
p_1	Injektionsdruck,	Ра
p _{atm}	Atmosphärendruck,	Pa

Auftretende druckabhängige Gleitströmungseffekte in der Gasphase, die zu Abweichungen vom reinen Darcy-Fluß führen (scheinbare Permeabilität k_s), werden durch die Klinkenberg-Korrektur berücksichtigt.

$$k_g = k_\infty (1 + \frac{\alpha}{p_m})$$

α	Klinkenberg-Konstante,	Pa
p _m	mittlerer Druck $(p_1 + p_2) / 2$,	Pa
p ₁ ; p ₂	Porendrücke (Probeneingang, -ausgang),	Pa
k_{∞}	Klinkenberg Permeabilität,	m²
kg	Klinkenberg korrigierte Permeabilität für kompressible Medien,	m².

Aus den stationären Durchströmungsversuchen mit Gas werden die zugehörigen Permeabilitäten berechnet. Die so bestimmten scheinbaren Gaspermeabilitäten werden gegen den reziproken Wert des mittleren Drucks aufgetragen. Zur Ermittlung der Klinkenberg korrigierten Permeabilität werden die gemessenen scheinbaren Gaspermeabilitäten auf einen unendlichen mittleren Druck interpoliert. Der Schnittpunkt der Geraden mit der Permeabilitätsachse bei 1/p_m ergibt dann die Klinkenberg korrigierte Permeabilität für kompressible Medien.

3.3.2 Ergebnis der Permeabilitätsmessungen

Die Dichtigkeitsprüfung mit Gas als Eingangsprüfung wurden zur Ermittlung von eventuellen Randläufigkeiten in den Reaktionszellen und als orientierende Permeabilitätsmessung durchgeführt. Aus der Einzelmessung wird orientierend die scheinbare Permeabilität berechnen, die in der Regel, größer ist als die Klinkenberg korrigierte Permeabilität. Die Dichtigkeitsprüfung erfolgt jeweils mit Stickstoff bei einem Injektionsdrucks von 2 bar.

Die Ergebnisse der Permeabilitätsuntersuchungen sind Tabelle 3-3 in aufgeführt. Unter Berücksichtigung der vereinfachten Versuchsrandbedingungen (Kurzzeitversuche, Wertermittelung aus vier Einzelwerten) geben die Ergebnisse auch Hinweise auf den möglichen Einfluss der nachträglichen Schrumpfung auf die Durchlässigkeit.

Mit Ausnahme der Probe 2 erfolgte die erste Durchlässigkeitsmessung nach der 28-Tage Abbindefrist und die Nachmessung zweieinhalb Monate später.

Die mit Mikrosilica angemischten Proben weisen eine uneinheitliche Tendenz auf. Während die Größenordnung der Durchlässigkeit mit $k_s=10^{-17}m^2$ gleich geblieben ist, zeigt insbesondere die Probe 2, dass die Durchlässigkeit mit der Zeit leicht zunimmt. Der erste niedrige Wert von $k_s=10^{-19}m^2$ wurde ca. eine Woche nach der Anmischung ermittelt. Hinweis: Die Probe 2 wurde nicht wie die anderen Proben auf dem Rütteltisch verdichtet. Die zeitliche Durchlässigkeitsentwicklung der Proben 3 und 4 gibt keine direkten Hinweise auf Schrumpfungseffekte.

Die mit Schiefermehl angemischten Proben unterscheiden sich in der Durchlässigkeit um zwei Größenordnungen. Eine zeitliche Zunahme der Durchlässigkeit ist nicht erkennbar. Bei der Probe 5 wurde ein konservativer Wert angegeben, da während des Kurzzeitversuches keine Durchströmung gemessen wurde.

Probe Nr.	MgSO4, wasserfrei + Halit	(k _s)
	+	$/m^{2}/$
Probe 01	Mikrosilika	5E-16
		Fläche+Rand
Probe 02	Mikrosilika	6E-19; 2E-17; 2E-17
Probe 03	Mikrosilika	3E-16; 2E-17
		Fläche+Rand
Probe 04	Mikrosilika	5E-17; 1E-16
Probe 05	Schiefermehl	3E-18; 2E-19
Probe 06	Schiefermehl	3E-17; 3E-17
Probe 07	Talk	> E10-15
		Durchfluss zu hoch für das
		Messsystem
Probe 08	Talk	> E10-15
		Durchfluss zu hoch für das
Brobo 00	Mikropiliko	
Probe 09	IVIIKI USIIIKa	3E-18
Probe TU		9E-17
	Kleserit + Hallt +	
Probe 11	Mikrosilika	2E-20; 1E-20
Probe 12	Mikrosilika	2E-18; 1E-21
Probe 13		7E-21
Probe 14		4E-21
Probe 47		1E-16
Probe 48		3E-17; 3E-17
Probe 50		1E-16
Probe 52		9E-17
Probe 54		9E-17; 8E-17
Probe 55		9.8E-17
Probe 58		4E-18

Tabelle 3-3:Permeabilitäten k_s

Lösungspermeabilitäten

Probe 11 Mikrosilika	1E-19

3.4 Kristallisationsdruckmessungen

3.4.1 Messverfahren

Die messtechnische Ermittlung von Kristallisationsdrücken bzw. von Quelldrücken ist im Hinblick auf bautechnische Materialprüfungen zurzeit nicht normiert. Für die durchgeführten Messungen wurden von der GRS weiterentwickelte baugleiche OEDOMETER-Zellen eingesetzt, die sich aber grundsätzlich vom Messverfahren bzw. in den Messaufnehmern unterscheiden.

- Verfahren I Druckaufnehmer
- Verfahren II Kraftaufnehmer

Im Verfahren I wird mit Druckaufnehmern (Absolutdruck; Typ KELLER) der integralwirkende hydraulische Druck gemessen, der im Idealfall dem Kristallisationsdruck entspricht. Voraussetzung ist, dass die Messmenbran des Aufnehmers, die im direkten Kontakt mit dem Messgut steht, nicht nur punktuell druckbeaufschlagt wird. Was bei Flüssigkeiten weitgehend unkritisch ist, kann bei Feststoffreaktionen, wie der Kristallisation von Mineralphasen, problematisch werden.

Im Verfahren II wird die, durch die Volumenvergrößerung hervorgerufene axial, auf eine definierte Fläche wirkende Kraft (Typ BURSTER) gemessen und in einen Druck umgerechnet (vgl. Kalibrationsprotokolle). Für die Ableitung eines Kristallisationsdruckes aus dem axialen Kraftvektor ist es wichtig, dass die Verfestigung des Messgutes gleichmäßig erfolgt und sich nicht innerhalb der ODOMETER-Zelle radial versteift.

Abb. 3-10: Verfahren I. Links; Skizze von der Messzelle mit Druckaufnehmern in der Bodenplatte (4/2)) und im Mantel (4/7). Rechts oben; vereinfachtes Schema der Versuchskonfiguration zur Messung des Kristallisationsdruckes während des Abbindens der angemischten Salzmischungen.

Die nachstehende Abbildung zeigt die einzelnen Komponenten der Messzelle für das Verfahren II. (A) Schraubkappe, (B) Halterung für Kraftaufnehmer, (C) Kraftaufnehmer/Stecker, (D) gehärtete Platte zur verbesserten Kraftübertragung auf den Aufnehmer, (E) Stempel mit Abstreif-/Gleitring, (F) Messzelle –Ansicht von unten- mit O-Ringdichtung und Verschraubungen für die Bodenplatte mit Fritte (G). Im Gegensatz zum Verfahren I kann bei dieser Konfiguration aufgrund der fehlenden Fritte im Stempel der Prüfkörper nicht durchströmt werden.

Die bevorzugte Höhe für das Messgut beträgt 50 mm. Abb. zeigt die zusammengebaute Messzelle.

Abb. 3-11: Explosionsansicht der Teile der Kristallisationsdruckmesszelle.

Abb. 3-12: Verfahren II; Position des Kraftaufnehmers in der Messzelle (F). Der Sensor (C) wird auf der gehärteten Platte (D) auf dem Kolben (E) positioniert, der direkten Kontakt zum Material hat.

3.4.2 Versuchsablauf

Die Versuche wurden an 11 verschiedenen re-kristallisierenden Materialmischungen durchgeführt, deren Rezepturen von DBE bereitgestellt bzw. geliefert wurden (Tab.).

In der Abfolge wurde zunächst eine Suspension aus dem jeweiligen innert Stoff (z. B. Schiefermehl) und Lösung hergestellt, die mit dem Zuschlagstoff (z. B. Gewerbesalz) vermengt wurde. Anschließend wurde das konditionierte Basismaterial (z. B. Kieserit)
zugeben. Die vorbereiteten feuchten Materialmischungen wurden in die konfigurierte Messzelle eingerüttelt (2 min) und ohne Vorspannung -aber steif- eingeschlossen.

Schritte beim Einbau des Materials

- das Probenmaterial wird eingefüllt;
- die Zelle mit dem Material wir dann 2min gerüttelt (Luftblasen werden entfernt);
- Planziehen der Material und anbringen der Bodenplatte (G) die Schrauben werden über Kreuz angezogen

Entsprechend der Einbaugeometrie (Höhe 50 mm; Durchmesser 49,5 mm) der Messkammern betrug das Volumen 96,2 cm³ +/- 0,5 cm³.

Die Messwerterfassung erfolgte kontinuierlich (getaktet 10-60 Minuten) über einen Zeitraum von mindestens 28 Tagen (Abbindefrist).

Erfasst wurden der nach Einschluss der Materialmischung sich entwickelnde Kristallisationsdruck. Mit Ausnahme von Probe M1 und M2 wurden alle Kristallisationsdruckmessungen unter definierten Temperaturenbedingungen im Labor oder im Wärmeschrank durchgeführt.

Abb. 3-13 Konfigurierte OEDOMETER-Zelle im Wärmeschrank.

Nach Abschluss der Messungen wurden die Prüfkörper ausgebaut und hinsichtlich Schrumpfungserscheinungen und Feuchtigkeitsrückständen bemustert.

Aufgrund der festen Verspannung der Prüfkörper in der Zelle erfolgte der Ausbau durch mechanisches Auspressen. Dieser Vorgang wurde unter definierter Kraftsteuerung durchgeführt. Mit dem so genannten "Punch-Test- wurde das "Los-Brech-Moment" bestimmt, das ein wesentlicher semi-quantitativer Hinweis auf das Ausdehnungs- und Verfestigungsverhalten des Materials gewertet werden kann. Als Das "Los-Brech-Moment" ist die Kraft, die notwendig ist, um den Prüfkörper vom Zellenmantel abzureissen bzw. um die Haftung des Prüfkörpers am Zellenmantel zu überwinden. An einzelnen ausgepressten Prüfkörpern wurde zudem die Bruchfestigkeit bestimmt.

Für den Ausbau der Proben wurde als Presse eine Druckprüfmaschine der Firma Walter + Bai AG Schweiz, Typ D100-DIG, Nr. 562 eingesetzt. Die Maschine verfügt zur Druckanzeige über einen geeichten Druckaufnehmer, Typ P8AP 200 bar, Nr. 51/98. und zur Längenbestimmung einen ebenfalls geeichten Wegaufnehmer, Typ Novotechnik TS 100, Nr. 045139/A. Die Ansteuerung erfolgt entweder Druck- oder Weg gesteuert. Die maximale Prüfkraft der Presse beträgt 100 KN.

3.4.2.1 Vorgehensweise beim Ausbau der fertigen Prüfkörper

Schritt 1 – 3; vergleiche nachfolgendes Kapitel:

- 6 Schrauben der Halterungen der Bodenplatte (G) überkreuz lösen;
- Bodenplatte abheben;
- Begutachtung der Stirnfläche des Pr
 üfkörpers (Struktur, Ritzhärte, Morphologie, Feuchtigkeit,..);
- obere Verschraubung mit dem Kraftaufnehmer mit der Hand abschrauben; der Stempel lässt sich bei keine Probe manuell mit der Hand herausziehen;

Schritt 4

 der Stempel und der Probekörper werden in der Presse herausgedrückt; Kraftsteuerung 0,5kN/s Beginn <2kN → Bestimmung des Los-Brech-Momentes;

Schritt 5 -6

3.4.2.2 Bilddokumentation vom Ausbau der Prüfkörper M03 und M04

Abb. 3-14: 1. Schritt; Einrichtung der Presse und der Steuerung, die zum Ausbau "Punsch-Test" der Prüfkörper eingesetzt wurde.

Abb. 3-15: 2. Schritt; Lösen der obere Verschraubung der Messzelle.

Abb. 3-16: 3. Schritt; Bemusterung der Stirnfäche des Prüfkörpers hinsichtlich Schrumpfungserscheinungen; danach Ermittlung des "Los-Brech-Momentes".

Abb. 3-17: 4. Schritt Ausdrücken der Probe nachdem das "Los-Brech-Moment" bestimmt wurde.

Abb. 3-18: 5. Schritt; Bemusterung des gesamten Prüfkörpers und Ermittlung der Ausbaudichte.

Abb. 3-19: 6. Schritt;
 Oben - Kontrolle der Funktionsfähigkeit der Systeme.
 Unten - Feststellung von Besonderheiten (Feuchtefilm , Korrosion).

Abb. 3-20: 7. Schritt; Vorbereitung der Prüfkörper für nachfolgende Untersuchungen.

3.4.3 Ergebnisse der Kristallisationsdruckmessungen

3.4.3.1 Übersicht (Materialien, Versuchsbedingungen – ergebnissen)

Eine Übersicht über die durchgeführten Kristallisationdruckmessungen und den Versuchsbedingungen ist in der nachfolgenden Tabelle dargestellt. Die Einzelergebnisse der Messungen sind in zusammengefasst.

Probe	Messzeitraum	System	Т	Sensor ¹⁾	Bemerkungen
Nr.	Datum		°C	Nr	<u> </u>
M01	18-02-2002 15-01.2003	MgSO4, wasserfrei; Gewerbesalz; VTS	25	SN49441 SN46264	Unverdichtet, gerüttelt
M02	18-02-2002 15-01.2003	MgSO4, wasserfrei; Gewerbesalz; VTS	25	SN52777 SN49440	Unverdichtet, gerüttelt
M03	26-03-2003 14-05-2003	MgSO4, wasserfrei; Gewerbesalz; VTS	25	182236	Unverdichtet, gerüttelt
M04	26-03-2003 14-05-2003	MgSO4, wasserfrei ASSE Frässalz ; Capsil	25	162391	Unverdichtet, gerüttelt
M05	06-06-2003 05-08-2003	Kieserit; Ronnenberg Haldensalz; VTS	25	182236	Unverdichtet, gerüttelt
M06	06-06-2003 05-08-2003	Kieserit, Anhydrit; ASSE Frässalz; Capsil	25	162391	Unverdichtet, gerüttelt
M07	29-08-2003 23-09-2003	MgSO ₄ ,wasserfrei Gewerbesalz, VTS	37	182236	Unverdichtet, gerüttelt
M08a	29-08-2003 09-09-2003	MgSO₄, wasserfrei Gewerbesalz VTS	37	SN46264 SN46266	Trocken eingebaut, gerüttelt $\rho = 1,52 \text{ g cm}^{-3}$, geflutet mit Q-Lösung mit 25 bar; $\rho = 1,3014 \text{ g cm}^{-3}$
M08b	10-09-2003 23-09-2003	Analog zu M08a		SN46264 SN46266	Analog zu M08a
M09	11-09-2003 23-09-2003	Epsomit, Anhydrit, Na ₂ SO ₄ , Gewerbesalz; VTS	37	162391	Unverdichtet, gerüttelt
M10	20-11-2003 02-02-2004	Kieserit, Gewerbesalz Capsil	37	162391	Unverdichtet, gerüttelt
M11	20-11-2003 02-02-2004	Kieserit; Gewerbesalz, Mikrosilica	37	182236	Unverdichtet, gerüttelt

 Tabelle 3-4:
 Kristallisationsdruckversuche - Versuchsbedingungen

3.4.3.2 Einzelergebnisse

3.4.3.2.1 Kristallisationsdruckmessungen bei 25°C

Der Kristallisationsdruck der Materialmischungen von Probe M01 und M02 wurde nach dem Verfahren I ermittelt. Die Messkurven sind von starken Schwankungen gekennzeichnet, die auf Temperaturänderungen während des Versuches zurückgeführt werden können (Ausfall der Klimaanlage).

Die Materialmischungen der Probe M01 und M02 unterscheiden sich allein durch den Zuschlagstoff (M01; VTS-Schiefermehl und M02; Mikrosilica). Die Basiskomponenten sind in beiden Proben Magnesiumsulfat, wasserfrei und fraktioniertes Gewerbesalz.

Tendenziell zeigen beide Materialmischungen einen gleichförmigen Verlauf des Kristallisationsdruckes, der nach dem verfügbaren Daten unabhängig von den Materialkomponenten ist.

Nach einer Anlaufzeit von einigen Tagen steigen zunächst die in der Bodenplatte gemessenen axialen Drücke an, was einer bevorzugten Ausdehnung des Materials in axialer Richtung entspricht. Die radial im Zellenmantel gemessenen Drücke steigen nach ca. 10 Tagen gleichmäßig an. Nach ca. 3 Wochen entspricht das Druckniveau der radial gemessenen Drücke dem axial gemessenen Druck.

In Abb. sind die Druckverläufe von M01 und M02 gefiltert dargestellt. Diese Darstellung verdeutlicht die Entwicklung eines positiven Kristallisationsdruckes während des Abindezeitraumes. Die Höhe des gemessenen absoluten Druckes lag über 10 bar. Es ist nicht auszuschließen, dass der anhaltende Anstieg der Drücke nach 4 Wochen durch das Messsystem bedingt ist. Die Tatsache, dass die Messmembranen nach Beendigung teilweise zerstört waren, deutet daraufhin, dass der Druckanstieg möglicherweise durch die Ausdehnung einzelner Minerale beeinflusst wurde.

Abb. 3-21:Proben M01 und M02 – Links; Kristallisationsdrücke von M01 gefiltert.Rechts; Kristallisationsdrücke von M02 gefiltert.

Der für dieselbe Materialmischung wie M01 nach dem Verfahren II ermittelte Kristallisationsdruck von M03 ist in ...dargestellt. Unmittelbar nach Beginn der Messung kommt es zu einer Verringerung des Druckes in der nicht vorgespannten Probe. Dieser phänomenologisch als Schrumpfung zu interpretierende Effekt hält mehrere Tage an. Nach ca. 2 Tagen kehrt der Prozess um und es entwickelt sich ein positiver Kristallisationsdruck. Ein Maximaldruck von 2 bar wird nach 20 Tagen erreicht. Nach 30 Tage verringert sich der Druck auf ein gleichbleibendes Plateau von 1 bar. Aufgrund des aufgezeichneten Temperaturverlaufes können etwaige Einflüsse ausgeschlossen werden.

Einen ähnlichen Verlauf wie Probe M03 nimmt die Entwicklung des Kristallisationsdruckes in der Probe M04. Im Gegensatz zur Probe M03 befindet sich das Druckniveau zum Ende des Versuches aber unterhalb des Ausgangsdruckes, was auf einen ausgeprägteren Schrumpfungsprozess zurückgeführt wird. Der Druckabfall tritt nach der als "normal" anzusetzenden Abbindefrist von 28 Tagen ein. Möglicherweise ist das Verhalten durch Capsil -als andersartige Komponente- bedingt.

In Probe M05 wurde anstelle konditioniertem Magnesiumsulfat, wasserfrei Kieserit eingesetzt. Wie schon in den Proben M03 und M04, zeigt sich zunächst eine über wenige Tage anhaltende Verringerung des Druckes. Dieses wird als Schrumpfungsprozess interpretiert. Im weiteren Verlauf erreicht der Kristallisationsdruck einen maximalen Wert von ca. 11 bar. Im Gegensatz zu den Vergleichsproben fällt der Druck nach 4 Wochen nicht wieder ab.

Der Probe M06 wurde als Zuschlagstoff Capsil zugegeben. Die bei 25 °C durchgeführte Messung zeigt nach der typischen einleitenden Druckerniedrigung einen Anstieg des Kristallisationsdruckes aus etwa 2,5 bar. Im Beobachtungszeitraum von 60 Tagen verringert sich der Druck geringfügig ohne in den negativen Druck abzusinken.

34

Abb. 3-22: Proben M01 und M02 – axiale und radiale Kristallisationsdrücke ungefiltert.

Abb. 3-23: Proben M03 - Kristallisationsdruckkurve.

Abb. 3-24: Proben M04 - Kristallisationsdruckkurve.

Abb. 3-25: : Proben M05 - Kristallisationsdruckkurve.

Abb. 3-26: :Proben M06 - Kristallisationsdruckkurve.

3.4.3.2.2 Kristallisationsdruckmessungen bei 37°C

Der Kurvenverlauf des Kristallisationsdruckes der Probe M07 –ermittelt für eine Umgebungstemperatur von 37 °C im Verfahren - zeigt einen bis dahin atypischen Verlauf. Zum einen fehlt der "Schrumpfungseffekt" zu Beginn der Messung und zum anderen kommt es zu keinem erkennbaren Druckaufbau wie in der vergleichbaren Mischung der Probe M03. Ein Einfluß der höheren Umgebungstemperatur kann an dieser Stelle nicht ausgeschlossen werden.

Die Proben M08a und M08b hatten wie M07 Referenzmischung als Magnesiumsulfat, wasserfrei – Gewerbesalz – Schiefermehl als Materialbasis. Die Kristallisationsdruckmessung wurde aber nach dem Verfahren II dynamisch d. h. durch Flutung durchgeführt. Die Zuführung von Q-Lauge zur trockenen, nicht verdichteten Materialmischungeng erfolgte mit einem Überdruck von 25 bar. Der Überdruck wurde für 2 bis 3 Tage aufrecht gehalten. Nach kurzzeitiger Druckentlastung, bei der z.T. nicht verbrauchte Lösung austrat, wurden die Proben wieder eingeschlossen und die langfristige Druckentwicklung abgewartet.

In der Probe M08a stiegen in dem Beobachtungszeitraumvon 10 Tagen der axiale und der radiale Druck nur schwach um ca. 1 bar an. In der Probe M08b erreichte der radiale Druck ein Maximum von 9 bar während der axiale Druck um 1.5 bar anstieg.

Beide Kurvenverläufe (M08a,b) geben keine Hinweise auf "Schrumpfungseffekte".

In Probe M09 wurde die Materialmischung variiert. Der nach dem Verfahren II gemessene Kristallisationsdruck bei 37 °C zeigt in den ersten vier Tagen einen linearen Anstieg auf ein Druckniveau unterhalb von 3 bar, das über den folgenden Zeitraum gleich bleibt. Ein "Schrumpfungseffekt" tritt nur kurzzeitig und nicht ausgeprägt zu Beginn der Messung auf.

Der Einfluß der Temperaturerniedrigung auf den Kristallisationsdruck nach dem Ende des Abbindezeitraumes wurde in den Proben M10 und M11 nach Verfahren II bei 37 °C Ausgangstemperatur untersucht.

Der Kurvenverlauf von Probe M10 zeigt einen eher typischen Verlauf mit einem ausgeprägten "Schrumpfungseffekt" zu Beginn der Messung und einen Anstieg des axialen Kristallisationsdruckes nach 40 Tagen auf ca. 2,5 bar. Die spontane Änderung der Umgebungstemperatur von 37 auf 25°C bewirkt einen kurzzeitigen Druckanstieg, der auf das Angleichen der Temperatur des Messsytems zurückgeführt wird. Entsprechend ist der Druckabfall bei der anachließenden Temperaturerhöhung von 25 auf 37 °C zu interpretieren.

Der Kurvenverlauf der Probe M11 zeigt die selbe Druckentwicklung wie Versuch M10.

Abb. 3-27: Proben M07 - Kristallisationsdruckkurve.

Abb. 3-28: Proben M08a – Kristallisationsdruckkurve; Probe geflutet.

Abb. 3-29: Proben M08b – Kristallisationsdruckkurve; Probe geflutet.

Abb. 3-30: Proben M09 - Kristallisationsdruckkurve.

Abb. 3-31: Proben M10 - Kristallisationsdruckkurve.

Abb. 3-32: Proben M11 - Kristallisationsdruckkurve.

3.4.4 Diskussion der Kristallisationsdruckmessungen

Die Messergebnisse der durchgeführten Kristallisationsdruckmessungen sind in Tabelle 3-5 dargestellt.

Probe	A)	B)	C)	D)	E)	F)	G)	Bemerkungen
Nr.		°C		bar	g cm ⁻³	kN	MPa	
M01		25	-/-	<10	-/-	-/-		-/-
M02	I	25	-/-	<11	-/-	-/-		-/-
M03	II	25	Ja	~2,5	1,917	30,0	-/-	Keine Hinweise auf
								Schrumpfung
M04		25	Ja	~1,0	1,841	20,5	-/-	Keine Hinweise auf
								Schrumpfung; aber auf Poren
M05		25	Ja	<12	2,046	14,0	37,99	Keine Hinweise auf
								Schrumpfung
M06		25	Ja	<3,0	1,985	5,0	21,18	Keine Hinweise auf
								Schrumpfung; aber auf Poren
M07		37	Ja	~0,5	1,995	3,9	15,14	Hinweise auf Schrumpfung
M08a	I	37	-/-	<3,0	-/-	-/-	-/-	Probe geflutet
M08b	I		-/-)	~9,0	-/-	-/-	-/-	Probe geflutet
M09	II	37	Ja	<3,0	2,028	10,8	9,71	Hinweise auf Schrumpfung
M10	II	37	Ja	<2,5	1,981	2,1	-/-	Hinweise auf Schrumpfung
M11	II	37	Ja	<2,5	2,028	2,6	-/-	Hinweise auf Schrumpfung

Tabelle 3-5:	Ergebnisse der Kristallisationsdruckmessungen
--------------	---

A) Messverfahren;
 B) Umgebungstemperatur,
 C) "Schrumpfungseffekt" zu Beginn der Messung,
 D) maximaler Kristallisationsdruck,
 E) Dichte der Probe nach Ausbau;
 F) "Los-Brech-Moment",
 G) Bruchfestigkeit,
 1a) nicht bestimmt-;
 2) nach Ausbau bestimmt

Mit wenigen Ausnahmen zeigen alle Kristallisationsdruckkurven einen ähnlichen d. h. typischen Verlauf, aus denen zwei Zyklen (A + B) abgeleitet werden können.

A) negativer Druck zu Beginn der Messung

Grund: Volumenverringerung; Folge: "Schrumpfungseffekt"

B) positiver Druck im Verlauf der Messung
 Grund: Volumenvergrößerung; Folge: Formschluss mit der Messzelle

Im ersten Zyklus (A) wird freies Wasser in die Mineralstrukturen / Kristallgitter eingebaut. Die Minerale "wachsen" bevorzugt nach "innen" in die Porenräume hinein. Dabei bildet sich ein festes Korngerüst mit festen belastbaren Stützstellen zwischen den einzelnen Mineralen. Dieser Prozess verbraucht Volumen und ist als "Schrumpfungseffekt" eindeutig durch die Messkurven belegt.

Im zweiten Zyklus (B) "wächst" das verfestigte Korngerüst bevorzugt nach "aussen". In der Volumenbilanz ist dieser Prozess positiv. Es baut sich ein Kristallisationsdruck auf. Die Größe des Druckes ist aber abhängig von der Güte und der Verteilung der Verfestigung des Korngerüstes innerhalb der Messkammer. Die an einzelnen ausgebauten Proben ermittelte hohe Bruchfestigkeit, ist ein zusätzlicher Indikator für ein kompakt verfestigtes Korngerüst.

Die gemessenen "Los-Brech-Momente" weisen auf einen ausgeprägten radialen Formschluss mit der Messkammer hin. Schrumpfungserscheinungen wurden dagegen bevorzugt an den Stirnflächen der Proben beobachtet.

Bezogen auf die Referenzmischung (Magnesiumsulfat, wasserfrei, Gewerbesalz und Schiefermehl), scheint der Einfluss der untersuchten Materialmischungen auf die Höhe des Kristallisationsdruck vorhanden aber nicht auschlaggebend zu sein. Die nach dem Ausbau ermittelten praktisch identischen Materialdichten der Proben deuten eine relativ gute Reproduzierbarkeit hin.

Einen signifikanten Einfluß auf die Zyklen, scheint dagegen die Umgebungstemperatur und das Messverfahren zu haben. Für eine abschließende Einschätzung dieser Faktoren ist die vorliegende Datenbasis aber nicht ausreichend.

Allgemein kann für ein eingespanntes AISKRISTALL-Material im Mittel von einem minimalen Kristallisationsdruck von 1 bar und einem maxialen Druck kleiner 10 bar ausgegangen werden.

3.5 Geotechnischen Untersuchungen

Zur Ermittlung der geomechanischen Eigenschaften der Salzmischungen wurden an Prüfkörpern, die von DBE hergestellt worden sind und von GRS präpariert wurden, Festigkeitsuntersuchungen durchgeführt. Neben dem statischen Elastizitätsmodul, der Zugfestigkeit und dem Dilatanzverhalten wurden schwerpunktmäßig die einaxiale Druckfestigkeit ermittelt. Die Einzelergebnisse der Untersuchungen sind im Anlagenband dokumentiert.

Die Untersuchungen erfolgen an Proben, die mindestens 28 Tage ausgehärtet waren. Vor und nach der Probenpräparation wurden die Proben in Folie eingeschweißt, damit sie keine Luftfeuchtigkeit aufnehmen konnten.

3.5.1 **Probenpräparation**

 Abb. 3-33 Die Präparation der Prüfkörper erfolgte auf der Drehbank (Foto links).
 Der Durchmesser wird durch Abdrehen der Länge der angelieferten Probe angepasst (Foto rechts).

Für die mechanischen Festigkeitsuntersuchungen wurden die Druckflächen (Stirnflächen) der Prüfkörper auf der Drehbank plan-parallel abgedreht und der Durchmesser im Verhältnis 1:2 der Länge des Probekörpers angepasst.

Das Auftragen einer Ausgleichsmasse auf die Stirnfläche entfällt durch das planparallele Abdrehen der Proben. Die Druckflächen der Probekörper können so zwischen den Druckplatten eingebaut werden, dass die Last senkrecht auf die Stirnflächen aufgebracht werden kann.

3.5.2 Einaxiale Druckfestigkeit

Die Untersuchungen der Druckfestigkeit (Bruchspannung) erfolgte in Anlehnung an die DIN 1048, Teil 5: Prüfverfahren für Beton, Festbeton, gesondert hergestellte Betonkörper Abschnitt 7.2 und 7.5.

Die Messungen wurden an zylindrischen Prüfkörper mit einem Durchmesser zu Längen Verhältnis von 1:2 durchgeführt. Die Prüfkörper wurden kraftgesteuert mit 0,5 N/mm² \pm 0,2 N/mm² pro Sekunde zu Bruch gefahren (Ausnahme Probe P16 und P17, diese wurden weggesteuert mit einer Deformationsgeschwindigkeit von 1 mm/min zu Bruch gefahren).

Die einaxiale Druckfestigkeit β_D ergab sich aus der erreichten Höchstlast F, die zum Bruch führte und der Druckfläche Agemäß:

$$\beta_{\mathsf{D}} = \frac{\mathsf{F}}{\mathsf{A}}$$

- β_{D} Druckfestigkeit, Pa
- F Höchstlast, N
- A Druckfläche, m.

Abb. 3-34: Foto eines Prüfkörpers von der Referenzmischung mit Kieserit (DBE P1010018m.jpg).

3.5.2.1 Ergebnisse

Tabelle 3-6:	Ergebnisse	der Bruchfesti	asuntersuchun	aen.
				· · · ·

Datum der Messung	Probe-Nr.	Geometrie	Gewicht	Durchmesser	Höhe	Dichte		Bruch- stauchung	Bruch- spannung
			[g]	[mm]	[mm]	[g cm ⁻³]		[-]	[MPa]
27.02.03	P15	Zylinder	10352.0	150.5	303.0	1.921		0.0147	8.94
10.02.03	P16	Zylinder	9328.0	147.2	287.0	1.910		0.01	32.05
10.02.03	P17	Würfel	6357.0	46.2*146.7*15	4	1.925		0.01	14.96
27.02.03	P18	Zylinder	10149.0	151.5	312.0	1.804		0.0068	7.44
02.04.03	P19	Zylinder	10025	151.3	317.9	1.754		0.0045	8.60
02.04.03	P20	Zylinder	10269	154.0	327.4	1.684		0.0043	8.04
02.04.03	P21	Zylinder	3503	106.2	210.0	1.885		0.0077	18.36
02.04.03	P22	Zylinder	10177	149.3	314.8	1.847		0.0048	8.25
02.04.03	P23	Zylinder	9579	150.5	291.1	1.850		0.0019	1.93
02.04.03	P24	Zylinder	6486	130.3	260.7	1.866		0.0056	3.56
02.04.03	P25	Zylinder	10401	149.4	326.3	1.818		0.0091	2.88
26.05.03	P28	Zvlinder	9857	147.0	314.5	1.847		0.0056	3.08
26.05.03	P29	Zvlinder	9925	147.0	317.0	1.845		0.0058	1.81
26.05.03	P31	Zvlinder	9311	147.7	301.5	1.802		0.0082	22.14
26.05.03	P36	Zvlinder	9247	148.0	321.0	1.674		0.0047	13.60
24.07.03	P 37b	Zvlinder	3449	105.0	199.0	2.002		0.0057	22.98
02.04.03	P38	Zylinder	3569	105.7	209.8	1.940		0.0040	10.65
24.07.03	P 39	Zylinder	3328	105.0	200.5	1.917		0.0042	5.51
02.06.03	P39	Zylinder	3401	105.0	200.0	1.964		0.0029	8.75
02.04.03	P40	Zylinder	3544	105.0	209.6	1.953		0.0126	19.21
02.04.03	P41	Zylinder	3565	104.7	210.5	1.967		0.0046	11.24
26.05.03	P49	Zylinder	10334	151.0	337.0	1.712		0.0063	6.42
26.05.03	P56	Zylinder	9258	152.0	305.5	1.712		0.0064	8.21
26.05.03	P59	Zylinder	10193	154.5	345.0	1.576		0.0047	5.72
26.05.03	P60	Zylinder	10145	150.5	327.0	1.576	•	0.0063	10.97
26.05.03	P63	Zylinder	3240	105.0	200.0	1.871		0.0086	16.96
26.05.03	P64	Zylinder	3228	105.0	200.0	1.864		0.0086	19.55
26.05.03	P65	Zylinder	3232	105.0	200.0	1.866		0.0084	19.07
02.06.03	P66	Zylinder	3256	105.0	200.5	1.875		0.0070	9.25
02.06.03	P67	Zylinder	3239	105.0	199.5	1.875		0.0059	5.52
02.06.03	P69	Zylinder	3276	105.0	200.0	1.892		0.0055	25.64
26.05.03	P70	Zylinder	3460	105.0	200.0	1.998		0.0042	10.90
02.06.03	P71	Zylinder	3487	105.0	200.0	2.014		0.0032	10.98
26.05.03	P72	Zvlinder	3383	105.0	200.0	1.953		0.0034	2.55
26.05.03	P73	Zvlinder	3439	105.0	200.0	1.986		0.0027	2.22
26.05.03	P74	Zylinder	3505	105.0	200.0	2.024		0.0042	4.24
26.05.03	P75	Zvlinder	3435	105.0	200.0	1.983		0.0031	3.79
26.05.03	P76	Zvlinder	3469	105.0	200.0	2.003		0.0030	3.92
02.06.03	P77	Zvlinder	3466	105.0	200.0	2.001		0.0031	5.23
26.05.03	P78	Zvlinder	3446	105.0	200.0	1.990		Fehlversuch	1
02.06.03	P79	Zvlinder	3493	105.0	200.0	2.017		0.0035	5.21
02.06.03	P80	Zvlinder	3449	105.0	200.0	1.992		0.0064	3.09
26.05.03	P82	Zylinder	3472	105.0	200.0	2.005		0.0034	4.05
26.05.03	P83	Zylinder	3478	105.0	200.0	2.008		0.0056	2.87
02.06.03	P84	Zylinder	3274	105.0	191.0	1.980		0.0035	3.70
02.06.03	P85	Zylinder	3429	105.0	199.8	1.982		0.0039	8.94
02.06.03	P86	Zylinder	3486	105.0	201.0	2.003		0.0027	5.50
02.06.03	P87	Zylinder	3423	105.0	201.5	1.962		0.0028	5.38
02.06.03	P88	Zylinder	3307	105.0	200.0	1.910		0.0027	5.05

Datum der Messung	Probe-Nr.	Geometrie	Gewicht	Durchmesser	Höhe	Dichte	Bruch- stauchung	Bruch- spannung
			[g]	[mm]	[mm]	[g cm ⁻³]	[-]	[MPa]
24.07.03	P 107	Zylinder	3282	105.0	200.0	1.895	0.0073	11.58
08.07.03	P109	Zylinder	2862	100.0	201.0	1.813	0.0225	0.76
08.07.03	P111	Zylinder	2809	100.0	201.0	1.779	0.0042	0.43
25.06.03	P113	Zylinder	3314	98.5	199.5	2.180	0.0019	7.70
08.07.03	P115 a	Zylinder	1555	71.0	190.5	2.062	0.0075	8.10
08.07.03	P115 b	Zylinder	1577	71.0	196.0	2.032	0.0056	9.62
08.07.03	P115 c	Zylinder	1496	71.0	186.5	2.026	0.0048	9.20
25.11.03	P130	Zylinder	3448	106.0	200.0	1.954	0.0024	10.53
25.11.03	P131	Zylinder	3452	107.0	200.0	1.919	0.0024	10.60
25.11.03	P132	Zylinder	3424	106.0	200.0	1.940	0.0031	17.02
25.11.03	P133	Zylinder	1064	70.0	140.0	1.975	0.0028	7.96
25.11.03	P134	Zylinder	3187	101.0	200.0	1.989	0.0039	13.24
25.11.03	P135	Zylinder	1050	70.0	140.0	1.949	0.0018	2.67
25.11.03	P136	Zylinder	1030	70.0	140.0	1.912	0.0055	6.00
25.11.03	P137	Zylinder	1052	70.0	140.0	1.953	0.0048	7.99
15.01.04	P138-2 Bruch	Zylinder	2680	95.0	190.4	1.986	0.0081	31.54
08.11.03	P139-2 E-Mod	Zylinder	3113	100.0	200.0	1.982	0.0073	31.60
08.11.03	P139-3	Zylinder	1094	70.5	140.0	2.002	0.0088	31.34
08.11.03	P139-4	Zylinder	1092	70.5	140.0	1.998	0.0082	32.28
08.11.03	P139-5	Zylinder	1101	70.5	140.0	2.015	0.0078	32.70
08.11.03	P139-6	Zylinder	1094	70.5	140.0	2.002	0.0086	32.78
25.11.03	P140-3	Zylinder	1096	70.0	140.0	2.034	0.0083	31.46
25.11.03	P140-4	Zylinder	1072	70.0	140.0	1.990	0.0086	27.88
25.11.03	P140-5	Zylinder	1090	70.0	140.0	2.023	0.0079	29.52
25.11.03	P140-6	Zylinder	1086	70.0	140.0	2.016	0.0084	29.99
14.01.04	P144	Zylinder	3191	100.0	200.0	2.031	0.0047	28.79
14.01.04	P145	Zylinder	3174	100.0	200.0	2.021	0.0055	28.69
14.01.04	P146	Zylinder	3466	105.6	200.0	1.979	0.0035	9.52
14.01.04	P148	Zylinder	1072	70.0	140.0	1.990	0.0034	12.75
14.01.04	P149	Zylinder	413	51.8	100.0	1.960	0.0053	20.34
14.01.04	P150	Zylinder	671	80.0	71.0	1.880	0.0010	1.70
02.06.03	P68 I	Zylinder	3339	105.0	200.0	1.928	0.0042	5.64
20.08.03	Xa	Zylinder	1132	70.0	140.0	2.101	0.0056	26.63
20.08.03	Xb	Zylinder	1130	70.0	140.0	2.097	0.0053	23.44
20.08.03	Xc	Zylinder	276	45.0	90.0	1.928	0.0093	20.91
20.08.03	Xd	Zylinder	202	40.0	80.0	2.009	0.0117	32.36
20.08.03	Xe	Zylinder	131	35.0	70.0	1.945	0.0091	19.83
20.08.03	Xf	Zylinder	82	30.0	60.0	1.933	0.0070	22.03
20.08.03	Xg	Zylinder	199	40.0	80.0	1.979	0.0090	26.50
27.11.02	AIS 1	Zylinder	1002.6	71.5	125.1	1.996	0.0132	27.65
27.11.02	AIS 2	Zylinder	1004.7	71.6	125.0	1.999	0.0128	28.38
27.11.02	AIS 3	Zylinder	1004.8	71.9	125.0	1.983	0.0114	27.21
14.01.04	M5	Zylinder	186	49.5	48.5	1.993	0.0130	37.99
14.01.04	M6	Zylinder	128	49.5	33.4	1.991	0.0112	21.18
14.01.04	M7	Zylinder	185	51.0	50.1	1.808	0.0092	15.14
14.01.04	M9	Zylinder	183	50.0	49.6	1.879	0.0108	9.71
02.06.03	MV 103	Zylinder	136	35.0	70.0	2.019	0.0029	22.46
02.06.03	MV 104	Zylinder	195	39.5	80.0	1.989	0.0042	16.92
02.06.03	MV 107	Zylinder	374	50.0	99.9	1.907	0.0032	14.03
02.06.03	MV 27	Zylinder	183	40.0	80.3	1.814	Fehlversuch	1
02.06.03	MV 3	Zylinder	48	25.0	50.0	1.956	0.0070	18.71
02.06.03	MV 86	Zylinder	196	40.0	80.0	1.950	0.0014	13.70
02.06.03	MV 89	Zylinder	205	39.9	80.1	2.047	0.0044	23.56
02.06.03	MV 92	Zylinder	271	45.0	90.1	1.891	0.0036	24.05
02.06.03	MV 94	Zylinder	195	40.0	80.0	1.940	0.0055	28.00

3.5.3 Statischer Elastizitätsmodul und Querdehnungszahl (Poissonzahl)

Der statische Elastizitätsmodul E_b errechnete sich aus der gemessenen Spannungsdifferenz $\Delta\sigma$ zwischen der oberen und der unteren Spannung der letzten Belastung und der zugehörigen Längsdehnungsänderung $\Delta\epsilon_1$ (DIN 1048, Teil 5, Abschnitt 7.5).

Zur Bestimmung des statischen Elastizitätsmoduls und der Querdehnungszahl wurden die Prüfkörper mit einer Last unterhalb der Bruchspannung in 3 Be- und Entlastungszyklen belastet. Anschließend wurde die einaxiale Bruchspannung ermittelt. Hierzu wurde die Last bis zum Bruch des Prüfkörpers erhöht. Die Längenänderung der Proben wurde mittels Wegaufnehmer gemessen. Zur Bestimmung der Durchmesser -Änderung wurden Dehnungsmessstreifen (DMS) auf die Mantelfläche der Prüfkörper angebracht.

$$\mathsf{E}_{\mathsf{b}} = \frac{\Delta \sigma}{\Delta \varepsilon_{\mathsf{l}}} = \frac{\sigma_{\mathsf{o}} - \sigma_{\mathsf{u}}}{\varepsilon_{\mathsf{o}} - \varepsilon_{\mathsf{u}}}$$

E_b Elastizitätsmodul, Pa

 σ_o obere Prüfspannung bei der 3. Belastung, Pa

 σ_u untere Prüfspannung bei der 3. Belastung, Pa

- $\epsilon_{\mathsf{o}} \quad \text{die bei} \ \sigma_{\mathsf{o}} \ \text{gemessene bzw. errechnete Dehnung}$
- ϵ_u die bei σ_u gemessene bzw. errechnete Dehnung.

Die Querdehnung ε_d ergab sich aus dem Quotienten zwischen der Änderung des Probendurchmessers Δd und des Anfangsdurchmessers d des Prüfkörpers (Gartung, E.: Empfehlung Nr. 1: Einaxiale Druckversuche an Gesteinsproben.- Empfehlung für die Versuchstechnik im Fels., Die Bautechnik 56 (1979), Heft 7, S. 217-220). Die statische Querdehnungszahl (Poisson-Zahl) μ ergab sich aus dem Quotienten der Querdehnungsänderung $\Delta \varepsilon_d$ zur Längsdehnungsänderung $\Delta \varepsilon_1$

$$\varepsilon_{d} = \frac{\Delta d}{d} \qquad \qquad \mu = \frac{\Delta \varepsilon_{d}}{\Delta \varepsilon_{l}}$$

 ϵ_d Querdehnung

- Δd Durchmesseränderung, m
- d Ausgangsdurchmesser, m.

3.5.3.1 Ergebnisse

01.12.03

01.12.03

01.12.03

01.12.03

01.12.03

01.12.03

01.12.03

01.12.03

P140-2/2E

P140-2/3E

P140-2/3B

P140-2/4E

P140-2/4B

P140-2/5E

P140-2/5B

P140-2/6E

01.12.03 P140-2/2B

Entlastungspfad

Belastungspfad

Entlastungspfad

Belastungspfad

Entlastungspfad

Belastungspfad

Entlastungspfad

Belastungspfad

Entlastungspfad

Datum der Messung	Proben-Nr	Pfad	E-Modul	Poisson Zahl	sigma U	sigma O
			[MPa]	[-]	[MPa]	[MPa]
15.01.04	P138-2/0	P138-2 E-Mod	9576	0.107	2.50	8.50
15.01.04	P138-2/1E	Entlastungspfad	16547	0.075	2.50	8.50
15.01.04	P138-2/1B	Belastungspfad	14146	0.119	3.50	11.00
15.01.04	P138-2/2E	Entlastungspfad	16730	0.094	3.50	11.00
15.01.04	P138-2/2B	Belastungspfad	13760	0.145	4.00	14.00
15.01.04	P138-2/3E	Entlastungspfad	17817	0.097	4.00	14.00
15.01.04	P138-2/3B	Belastungspfad	13864	0.166	6.00	17.00
15.01.04	P138-2/4E	Entlastungspfad	17410	0.123	6.00	16.00
15.01.04	P138-2/4B	Belastungspfad	14050	0.191	7.00	19.00
15.01.04	P138-2/5E	Entlastungspfad	19120	0.111	9.00	19.00
15.01.04	P138-2/5B	Belastungspfad	12080	0.229	9.00	22.00
15.01.04	P138-2/6E	Entlastungspfad	19861	0.104	11.00	22.00
15.01.04	P138-2/6B	Belastungspfad	11454	0.261	14.00	25.00
15.01.04	P138-2/7E	Entlastungspfad	20413	0.086	15.00	23.00
08.11.03	P139-2/1B	E bei Belastung	12968	0.144	2.75	6.25
08.11.03	P139-2/2E	E bei Entlastung	18009	0.108	2.60	6.00
08.11.03	P139-2/2B	E bei Belastung	17960	0.088	1.67	6.60
08.11.03	P139-2/3E	E bei Entlastung	19517	0.124	2.40	6.40
08.11.03	P139-2/3B	E bei Belastung	20513	0.157	3.00	7.90
08.11.03	P139-2/4E	E bei Entlastung	20137	0.133	1.85	7.50
08.11.03	P139-2/4B	E bei Belastung	19750	0.163	1.65	9.00
08.11.03	P139-2/5E	E bei Entlastung	20922	0.158	2.00	8.85
08.11.03	P139-2/5B	E bei Belastung	17297	0.198	2.07	12.50
08.11.03	P139-2/6E	E bei Entlastung	21080	0.187	1.94	12.00
08.11.03	P139-2/6B	E bei Belastung	20059	0.195	2.05	12.63
08.11.03	P139-2/7E	E bei Entlastung	21203	0.189	2.06	12.29
08.11.03	P139-2/7B	E bei Belastung	18178		1.97	12.87
01.12.03	P140-2/0	P140-2 E-Mod	13990	0.187	1.75	9.50
01.12.03	P140-2/1E	Entlastungspfad	26521	0.192	3.50	9.50
01.12.03	P140-2/1B	Belastungspfad	19765	0.213	3.50	11.40

Tabelle 3-7: Zusammenstellung der Ergebnisse zum statischen E-Modul und Poissonzahl.

24447

22331

24347

20380

23751

21841

23826

15300

22357

0.210

0.199

0.199

0.215

0.214

0.209

0.205

0.269

0.239

3.65

4.00

3.60

3.20

3.00

3.00

3.00

3.00

3.00

11.00

11.50

11.40

13.00

13.00

13.00

13.00

18.00

17.00

3.5.4 Spaltzugfestigkeit

Die Ermittlung der Zugfestigkeit erfolgte in Anlehnung an die DIN 1048 Teil 5: Prüfverfahren für Beton, Festbeton, gesondert hergestellte Betonkörper, Abschnitt 7.4 –Spaltzugfestigkeit - 7.4.1-Prüfung von Zylindern.

Der Prüfkörper wurde in einer Druckprüfmaschine längs zweier gegenüberliegender gerader Mantellinien belastet. Zwischen den Druckplatten und dem Prüfkörper wurden Lastverteilungsstreifen gelegt (Siehe DIN 1048 Teil 5, Abschn. 7.4.1). Das Aufbringen der Last erfolgte erst, nachdem durch langsames Anfahren die Druckplatten, die Lastverteilungsstreifen und der Prüfkörper gleichmäßig aneinander anlagen. Aus der erreichten Höchstlast ergab sich die Spaltzugfestigkeit gemäß:

$$\begin{split} \beta_{BZ} &= \frac{2 \cdot F}{\pi \cdot d \cdot I} \\ \beta_{BZ} & \text{Spaltzugfestigkeit, Pa} \\ F & \text{Höchstlast, N} \\ d & \text{Durchmesser des Prüfkörpers, m} \\ I & \text{Länge des Prüfkörpers, m} \end{split}$$

3.5.4.1 Ergebnisse

Tabelle 3-8: Spaltzugfestigkeit

Datum der Messung	Proben-Nr	Dichte	Spaltzug festigkei
		[g cm ⁻³]	[MPa]
24.07.03	P37a	1.962	-2.41
24.07.03	P40a	1.949	-2.95
24.07.03	P40b	1.949	-2.85
24.07.03	P41a	1.966	-2.54
24.07.03	P41b	1.969	-2.64
25.06.03	P114	2.107	-0.70
14.01.04	P138-1a	1.906	-2.76
14.01.04	P138-1b	1.974	-3.16
14.01.04	P138-1c	1.965	-2.79
08.11.03	P139-1a	1.958	-3.62
08.11.03	P139-1b	1.998	-3.97
08.11.03	P139-1c	2.005	-3.51
01.12.03	P140-1a	1.922	-2.73
01.12.03	P140-1b	2.007	-3.66
01.12.03	P140-1c	1.985	-3.51

3.5.4.2 Triaxiale Festigkeit und Dilatanzgrenze

Diese Untersuchungen erfolgten in einer Triaxialprüfanlage (Karman-Prinzip) an zylindrischen Prüfkörpern mit einer Länge von 200 mm und einem Durchmesser von 100 mm.

Die Dilatanzversuche wurden mit einer Lastzunahme von 2,5 MPa pro Minute durchgeführt.

Bei jeweils konstantem Manteldruck wurde die Axialkraft in Wegregelung bis zum Bruch gesteigert. Die Längenänderung der Prüfkörper wurde mit Wegaufnehmern bestimmt. Während der mechanischen Beanspruchung wurde die Volumenänderung der Prüfkörper mit Hilfe der Messung der Öl-Volumenänderung in der Triaxialzelle gemessen. Aus den triaxialen Versuchen wurden die Dilatanz und Druckfestigkeit der Materialien in Abhängigkeit vom Manteldruck bestimmt.

Während bei der Kompression einer Probe das Schließen von Poren und Mikrorissen und daraus resultierend eine Volumenabnahme überwiegt, ist das dilatante Verhalten durch eine Volumenzunahme infolge der vermehrten Entstehung und Ausbreitung von Mikrorissen gekennzeichnet. Der Anfangspunkt der Volumenzunahme ist als Dilatanzgrenze $\sigma_{\rm D}$ definiert.

Als Spitzenfestigkeit σ_{B} ist das Maximum der erreichten Spannungsdifferenz

 $\Delta \sigma = \sigma_1 - \sigma_3$

zu betrachten,

 $\sigma_{\rm B}$ = $\Delta\sigma$ Spitzenfestigkeit, Pa

- σ_1 Axialspannung, Pa
- σ_3 Mantelspannung, Pa

Die Untersuchungen erfolgen an 28 Tage erhärteten Proben. Vor und nach der Probenpräparation waren die Proben in Folie eingeschweißt, damit sie keine Luftfeuchtigkeit aufnehmen können.

3.5.4.3 Ergebnisse

Probe-Nr.

P 37b

P 39

AIS 1

AIS 2

AIS 3

Dichte

 $[g cm^{-3}]$

2.002

1.917

1.996

1.999

1.983

Datum der

Messung

24.07.03

24.07.03

27.11.02

27.11.02

27.11.02

 Tabelle 3-9:
 Zusammenstellung der Ergebnisse zum statischen E-Modul mit Belastungspfad.

E-Modul	sigma U	sigma O	E-Modul	sigma U	sigma O	E-Modul	sigma U	sigma O
[MPa]								
7263	2.0	6.5	16573	2	7	14146	2.0	6.5
2055	1.5	3.0	6265	1.5	3	4028	1.4	2.8
4972	4	21	14020	5	22	13355	6	20
7339	5	16	14391	5	16	12788	4	15
9814	4	16	15307	4	16	14128	4	17

 Tabelle 3-10:
 Zusammenstellung der Ergebnisse zum Dilatanzverhalten.

Datum der Messung	Proben- Nr	Dichte	Axial- Verformung	Sig1	Sig2=Sig 3	Radial- Verformung	Volumen- Verformung	Axial- Verformung	Sig1	Sig2=Sig 3	Radial- Verformung	Volumen- Verformung
		$[g cm^{-3}]$	[-]	[MPa]	[MPa]	[-]	[-]	[-]	[MPa]	[MPa]	[-]	[-]
15.01.04	P138-2	1.986	-0.00530	27.10	0.00	0.00157	-0.00218	-0.00815	31.54	0.00	0.00393	-0.00033
01.12.03	P140-2	1.970	-0.00408	25.16	0.00	0.00129	-0.00151	-0.00658	28.41	0.00	0.00317	-0.00027
30.01.04	P143-a	2.058	-0.00581	27.56	2.06	0.00136	-0.00311	-0.00961	30.81	2.06	0.00392	-0.00183
04.02.04	P143-b	2.070	-0.00657	35.99	4.83	0.00159	-0.00340	-0.03523	48.15	4.84	0.02304	0.00974
10.02.04	P143-c	2.061	-0.02178	55.57	10.29	0.00731	-0.00742	-0.05258	60.88	10.30	0.02893	0.00302

3.5.5 Kriechversuche

Die Kriechversuche wurden zurückgestellt und nur Versuche zum Dilatanzverhalten durchgeführt. Vorgesehen waren Indexuntersuchungen an 3 Mischungen mit je 1 Probe bei 3 Belastungsstufen von 10, 15 und 20 MPa, wobei jede Belastungsstufe 2 – 3 Wochen dauert. Danach sollten Messungen an 3 Proben einer ausgewählten Mischung bei 4 Belastungsstufen von 5, 10, 15 und 20 MPa vorgenommen werden.

Zur Ermittlung des Kriechverhaltens werden einaxiale Kriechversuche vorgenommen. Die Untersuchungen erfolgen in Anlehnung an die Empfehlung Nr. 16 des Arbeitskreises 19 Versuchstechnik Fels der Deutschen Gesellschaft für Geotechnik e.V.: Hunsche, U.: Ein- und dreiaxiale Kriechversuche an Gesteinsproben- Bautechnik 71 (1994), Heft 8, S. 500-505. Die zylindrischen Proben haben eine Länge von 200 mm und einen Durchmesser von 100 mm. Für diese Untersuchungen werden die Proben mit einer konstanten Last beaufschlagt. Die Längenänderung wird mittels Wegaufnehmern registriert.

Die Ergebnisse werden in Form eines Dehnungs-Zeit-Diagramms ($\epsilon_{\scriptscriptstyle I,w}=f(t))$ und als

Kriechraten-Zeit-Diagramm ($\epsilon_{1,w} = f(t)$) dargestellt.

Schallgeschwindigkeit; longitudinal	4440	m sec ⁻¹
Schallgeschwindigkeit; transversal	2537	m sec ⁻¹
Dichte	1996	kg m ³
Querdehnungszahl	0,258	-/-
Dynamischer E-Modul	32	GPa

¹⁾zum Vergleich Steinsalz 25-30 GPa

Bindemittel	Zuschlag	Materialbasis	Proben	σ	Q-Lauge + Lsg.	Mischungsverhältnis B-Z-M /g/
MgSO ₄ , wasserfrei	VTS-Schiefermehl			MPa		
		Halit-Gewerbesalz	AIS01 AIS02 AIS03 P59	27,65 28,38 27,21 5,72	220 220 220 235	170:245:305 170:245:305 170:245:305 140:???:305
	Mikrosilica					
		Halit-Gewerbesalz	P16 P18 P31	32,05 7,44 22,14	210 260 210	175:???:240 175:???:325 175:75:240
		Halit-Gewerbesalz Grasleben	P36	13,6	245	240:???:240
	Capsil 804					
		Halit-Gewerbesalz	P40 P41	19,21 11,24	235 235	155:110?:305 125:110?:305
		Frässalz ASSE (verschiedene Körnungen)	P28 P29 P56 P59 P60 P63 P64 P65 P66	3,08 1,81 6,42 8,21 5,72 10,97 16,96 19,55 19,07 9,25	235 235 230 235 235 235 235 235 235 235 235 235	115:105:305 115:105:305 100:105:305 115:105:305 115:100:305 140:100:300 140:100:305 135:95:300 115:105:315 115:105:315

3.5.6 Tabellarische Zusammenfassung der geotechnischen Ergebnisse

Bindemittel	Zuschlag	Materialbasis	Proben	σ	Q-Lauge + Lsg.	Mischungsverhältnis B-Z-M /g/
			P67	5,52	235	115:105:315 115:105:315 90:105:300
		Frässalz ASSE + Sylvin	P69	25,64	235	135:95:290
	Talk		keine			
Kieserit						
	VTS-Schiefermehlt					
		Halit-Gewerbesalz	P19 P20 <mark>P21</mark> M089	8,60 8,04 18,36 23,56	240 240 240 150 NaCI-Lsg	255:???:250 255:???:250 255:???:250 322:40:260
		Frässalz ASSE (verschiedene Körnungen)	M103	22,46	190	300:110:380
		Halit-Halde Ronneberg	M094	28	240 NaCI-Lsg	320:120:300
		Halit-Halde Ronneberg + Sylvin	M ₂₇₋₁₁₋₀₂	Keine Last	220 KCI-Lsg	260:140:320
	Mikrosilica					
		Halit-Gewerbesalz, (komplett)	P15 P17	9,94 14,96	160 160	322:???:180 322:???:180
		Halit-Halde Ronneberg	M092	24,05	240 NaCl-Lsg.	320:80:220
	Capsil					
		Halit-Gewerbesalz, (komplett)	P22 P23	8,25 1,93	190 180	300:???:340 300:???:340

Bindemittel	Zuschlag	Materialbasis	Proben	σ	Q-Lauge + Lsg.	Mischungsverhältnis B-Z-M /g/
			P24 P25 P38 P70 P71	3,56 2,88 10,65 10,9 10,98	160 150 160 160 160	300:???:340 300:???:340 300:???:340 300:110:360 300:110:360
		Halit-Gewerbesalz + Sylvin P76 mit Rohmagnesit	P72 P73 P74 P75 P76 P80 P82 P83 P83 P84 P85	2,55 2,22 4,24 3,79 3,92 3,09 4,05 2,87 3,70 8,94	160 160 160 160 160 171 171 171 171 171	300:110:312 300:110:312 300:110:350 300:110:350 300:110:365 300:130:350 300:130:350 300:130:350 300:130:350 300:130:350
		Halit-Gewerbesalz + Sylvin + Frässalz ASSE	P77 P78 P79	5,23 fehl 5,21	160 160 160	300:110:362 300:110:362 300:110:362
		Frässalz ASSE (verschiedene Körnungen)	P39 P68 M104 M107	8,75 4,6 16,92 14,03	160 160 190 180	300:110:340 300:110:340 300:110:380 300:110:380
		Frässalz ASSE + Sylvin	P86 P87 P88	5,50 5,38 5,05	171 171 171	300:130:350 300:131:350 300:132:350
	Talk		M086	13,70	171 KCI-Lsg.	322:40:220

4 Interpretation

Basis MgSO4, wasserfrei; Schiefermehl, verdichtet						
• AIS01-03	gleichwertige Herstell	ung	Q	gleiche (Gößend	ordnung
		σ	von	27,21	bis	28,38 MPa
Basis MgSO4, wasserfrei; Mikrosilica , nicht verdichtet						
• P16	gleiche Größenordnung wie mit Schiefermehl					
 P16 gegen P18 	P18 mehr Füllstoff und geringere Festigkeit					
		σ		32,05	und	7,44 MPa
Basis Kieserit; Schiefermel	hl , nicht verdichtet, unte	rsch	niedlio	che Lage	erungst	emperatur
• P19 – P21	gleichwertige Herstell	ung				
	P21 höhere Festigkeit	(La	gerur	ngstemp	eratur	35°C)
	Hinweis: Massenanga	ben	vom	Zuschla	agstoff f	ehlen
		σ	von	8,04	bis	18,36 MPa
Basis Kieserit; Mikrosilica,	nicht verdichtet					
• P15 und P17	gleichwertige Herstell	ung	(gleiche (Gößend	ordnung
	P17 (Würfel)					
		σ		9,94	und	14,96 MPa
Basis Kieserit: Cansil , nicht	verdichtet					
 D22 – D25 und D38 	Dasis Riesent, Capsii , filoni verdichter					
• FZZ – FZS unu FS6	Hinweis: Massenanda	ung ben	vom	Zuschla	Juseni	iehlen
	Timweis. Massenanga		Von	1 02	bio	
			VOIT	1,95	015	10,05 MFa
Basis Magnesiumsulfat, wasserfrei: Cansil , nicht verdichtet						
 P40 und P41 	P41 weniger Bindemit	tol	Jintot			
				10.01	und	
		σ		19,21	una	TI,24 MPa
gewährleistet.						

5 Literatur

- / 1 / Sander, W. and Herbert, H.-J. (2000): A new hydraulic barrier Performance of a self-sealing salt backfill material. In Proceedings DisTec 2000, Disposal Technologies and Conceps 2000, Kontec Gesellschaft für technische Kommunikation mbH, Hamburg. ISBN 3-9806415-3-8
- / 2 / SANDER, W. & HERBERT, H.-J. (2002): Wirksamkeit der Abdichtung von Versatzmaterialien.- Geochemische Untersuchungen zum Langzeitverhalten von Salzversatz mit Zuschlagstoffen.- GRS-Bericht-180, ISBN 3-931995-48-8, Köln.
- / 3 / Herbert, H.-J. (2000): Zur Geochemie und geochemischen Modellierung hoch salinarer Lösungen – Geologisches Jahrbuch, Sonderhefte, Reihe D, Heft SD1, 329 pp.
- / 4 / Europäische Patentanmeldung Nr. 00 120 249.8-2307 "Verfahren zum Verhindern des Eindringens einer Salzlösung in einen Hohlraum einer Salzlagerstätte". Anmelder: Gesellschaft für Anlagen- und Reraktorsicherheit (GRS) mbH, Erfinder: W. Sander.
- /5/ S.15 Salzbeton M2/...//
- /6/ Mitteilungen der DBE /ENG/
- /7/ /1/ Anlagenband; Geotechnische Anlage zum GRS-Abschlussbericht Dezember 2004
- / 8 / Winkler, E.M. (1975)
- /9/ Stone Properties, durability in man's environment. Springer-Verlag, New York.
- /10 / Knoblauch, H. & Schneider, U. (2001)
- /11 / Bauchemie. Werner Verlag GmbH & Co. KG, Düsseldorf.

Anlagen

Anlage 1-Kalibrationsprotokolle der verwendeten BURSTER - Kraftaufnehmer

Kristallisationsdruckmessungen

Messzelle	I			
Kraftaufnehmer Nr.	182236	KMA		
Messstelle	0.41	(Messsignal in Volt)		
Messkanal	80.6	(Umrechnung in bar)		
	Formel zu	r Berechnung des Dru	ckes:	
	((m (0.41) *	* 13.644) + 0.4635) * (-1	000) / 1924.42) * 10	
	mit			
	m(0.41)	Messignal in Volt (0 bis 2Volt \cong 0 bis 100 KN)	
	* 13.644	Steigung aus der Kalib	rationskurve vom KMA	
	+ 0.4635	Offset vom KMA (entfä	illt; bei Messbeginn NULL)	
	* (-1000)		Angabe als Kraft in N	
	/ 1924.24	Stempelfläche in mm ²	Angabe als Druck in MPa	
	* 10	Umrechnung	von MPa in bar	

• Kalibrationskurve KMA 182236

Kristallisationsdruckmessungen

Messzelle	II		
Kraftaufnehmer Nr.	162391	KMA	
Messstelle	0.42	(Messsignal in Volt)	
Messkanal	80.7	(Umrechnung in bar)	
	Formel zu	ır Berechnung des Dru	ckes:
	((m(0.41)	* 13.825) -1,5122) * (-10	00) / 1924.42) * 10
	mit		
	m(0.41)	Messignal in Volt (0 bis 2Volt \cong 0 bis 100 KN)
	* 13.825	Steigung aus der Kalib	rationskurve vom KMA
	- 1.5122	Offset vom KMA (entfä	illt; bei Messbeginn NULL)
	* (-1000)		Angabe als Kraft in N
	/ 1924.24	Stempelfläche in mm ²	Angabe als Druck in MPa
	* 10	Umrechnung	von MPa in bar

• Kalibrationskurve KMA 162391

Anlage 2- Kristallisationsdruck (p) eines Einkristalls in Pascal (Pa) nach Winkler (1975) (Mitteilung ENG)

$$p = R T / V_m \bullet In C / C_{sat}$$

Rmolare oder universelle Gaskonstante (8,314472 J/mol bzw. $Pa \cdot m^3 \cdot mol^{-1} \cdot K^{-1}$),Tthermodynamische Temperatur [K],

V_m molares Volumen [m³/mol],

c Konzentration in der Lösung,

c_{sat} Gleichgewichts-Sättigungskonzentration,

c/c_{sat} Wert für die Übersättigung der Lösung.

Abhängigkeit des Kristallisationsdruckes von Halit sowie den Magnesiumsulfat-Hydraten Leonhardtit, Pentahydrit und Hexahydrit vom Grad der Übersättigung der Lösung bei einer Temperatur von 20°C und 50°C. (aus Winkler, E.M. (1975): Stone – Properties, durability in man's environment. Springer-Verlag, New York.)
Kristallisationsdruck ausgewählter Salzminerale in Anlehnung an Knoblauch & Schneider (2001). Index*: Werte wurden aufgrund der Abhängigkeit des Kristallisationsdruckes vom Kristallwasseranteil der Mg-Sulfate extrapoliert.

Mineralname	Chemische	Kr	istallisationso	druck [N/mm ²]
	Zusammensetzung	c/c _{sa}	_{it} = 2	C/C _{sat} :	= 10
		0°C	50°C	0°C	50°C
Bassanit	CaSO ₄ ·0,5H ₂ O	33,5	39,8	112	132,5
Gips	CaSO₄·2H₂O	28,2	33,4	93,8	111
Epsomit	MgSO₄·7H₂O	10,5	12,5	35,0	41,5
Hexahydrit	MgSO₄•6H₂O	11,8	14,1	39,5	49,5
Pentahydrit*	MgSO ₄ ·5H ₂ O	13,7	16,3	46,3	57,3
Kieserit	MgSO ₄ ·H ₂ O	27,2	32,4	91,0	107,9
MgSO ₄ *	MgSO ₄	32,1	38,1	106,9	124,3
Mirabilit	Na ₂ SO ₄ ·10H ₂ O	7,2	8,3	23,4	27,7
Thenardit	Na ₂ SO ₄	29,2	34,5	97,0	115
Halit	NaCl	55,4	65,4	184,5	219
Kristallsoda	Na ₂ CO ₃ ·10H ₂ O	7,8	9,2	25,9	30,8
	Na ₂ CO ₃ ·7H ₂ O	10,0	11,9	33,4	36,5
	Na ₂ CO ₃ ·H ₂ O	28,0	33,3	93,5	110,9

Referenz: Knoblauch, H. & Schneider, U. (2001); Bauchemie. Werner Verlag GmbH & Co. KG, Düsseldorf.

Anlage 3:

0525 NA 6630 009 52-17

Anlage 5: Technisches Datenblatt Tonmehl Capsil 804-D100

		The second of the second					
Stephi	an Schmidt KG	Sicherheitsdatenblatt gemäß EG-Richtlinie 2001/58/EEC	Seite 2 von 3	Stepha	n Schmidt KG	sicherheitsdatenblatt gemäß EG-Richtlinie 2001/58/EEC	Seite 3 von 3
7.2.	Lagerung: fi fahlan (" Ve	ur trockene Tormehle glattwandige Silos m semeiduno von Benistenbildino ⁶⁰ , trocken l	it steilern Auslauf zu emp- coern	12.3.	Ökotoxische Wirku	ngen: nicht toxisch	
ø	Expositionsbe	ernietuung von Diuckenbruumig), u ocken n erenzung und per sönliche Schutzausrüsti	Benn Mg	12.4.	Weitere ökologisch	e Hinweise: im Wasser leichte Trubung	möglich
8.1.	Zusätzliche Hi n. a.	nweise zur Gestaltung technischer Anlagen	0	I3.	Hinweise zur Entse Produkt:	orgung Tone konnen als nichtgiftige Sto nem genehmigten Verfüllungsg	entsorgt werden in ei- gelände mit den entspre-
8.2.	Bestandteile m Quarz CAS Allgemeiner Die Angabe halb von D	tit arbeitsplatzbezogenen, zu überwachenden No. 14808-60-7 r Staubgranzwert in beziehen sich auf die aktuell gültige MAI beutschland sind die dort gültigen Vorsch	Grenzwerten MAK 0,15 mg/m ³ MAK 6,0 mg/m ³ C.Liste. In Ländern außer- iften hinsichtlich arbeits-		ungereinigte Verpao	chenden Bestimmungen kung: Verpackungsmaterial wird durc (Ges. f. Verwertung gebraucht ruckgenommen, ubliche Entson mit den bestehenden Bestimmun	h die Firma REPA-Sack ır Papiersacke mbH) zu- gung in Übereinstimmung gen
8.3.	platzbezoge Persönliche Sc Atemschutz Handschutz	ner Grenzwerte arzuwenden. hutzausrüstung bei Staubentwicklung kel (z.B.: Partikelfilte nich zureftend	Filtergeräte gegen Parti- klasse P2) verwenden	1. 1.	Angaben zum Tra ADR/RID-GGVS/G ADN/ADR IMDG/GGVSee IDAO-TJ/ATA-GR	sport GVE па. R па. R па. R па.	
	Augenschut Körperschu Schutz- und	 Inclustourentend inclustourentend Korperteile mit ausbürsten 	Wasser reinigen, Kleidung	15 . 15.1.	transport/wentere. Vorschriften Kennzeichnung	Augaven. Denn fransport als mon g nicht zutreffend	stauritori emigestutt
9.	Physikalisc Aussehen: g	che und chemische Eigenschaften gemählen Farbe: hell	Geruch: neutral	15.2.	nationale Vorschrift	Wassergefährdungsklasse: "nicht w (gemäß V w V wS, Anhang 1)	assergefährdend"
9.1.	Sicherheitsrele	wante Daten			sonstige Vorschrifte	TA-Lutt : Allgemeiner Staubgrenzw ni: BIAListe	rert 20 mg/m³
	Siedepunkt: Schmelzpur Flammpunk Selbstentzür Fewlosionso	entfallt ldt/Schmelzbereich: ca. 1350 °C 1. 1. nicht entzmollich nicht ersthosiv ocien- nicht exclosiv		16 . Natùrli sche M sonder	Sonstige Angaben cher Rohstoff, herges assen werden nicht ir als "natürlich ersche	tellt durch selektive bergbauliche Gewi n Europäischen Altstoffverzeichnis (EL inende Substanz" klassifiziert	anung. Tone und Kerami- NECS) gesondert geführt,
	Dichte: Tachahrait:	2,6 g/cm ³		Die ED	TECS Nr. ist 310127	6 und die CAS-Nr. ist 999 999-4.	
	ph-Wert (be	ei 100 g/l Wasser): 7 - 8		Gemäß Ouarz i	geltenden Vorschrift Kenntnis gesetzt we	en müssen Mitarbeiter über die Anwese anden und in dem Gebrauch und der Har	nheit von kristallinem Idhahmo des Produktes
10.	Stabilität und beine Recon	Reaktivität ^{oderheiten}		ausgebi	ldet sein.		CONTRACT T COD STRUCTURE
П.	Angaben zur nicht toxisc bekannt)	Toxikologie In (bei sachgemäßer Verwendung keine ge	sundheitlichen Wirkungen	17. Diese I rem Un keine G Voltata	Haftung nformationen sind nac ternehmen ermittelt v "arantien gegeben. Es	Ab bestern Wissen zum angegebenen Be corden Thrischtlich ihrer Richtligkeit ur ist in der Verartwortung des Verbrauch einer anwenden nocherheitschen Bedirich	arbeitungsdatum in unse- id Vollständigkeit werden iers, die Richtigkeit und
12. 12.1.	Angaben zur (Angaben zur E	Ökologie Jirnination (Persistenz und Abbaubarkeit): n	icht biologisch abbaubar		Torrandor and the second se	NUMBER OF THE OWNER	

Qualitätswesen und Umweltschutz Dr. W. Fiebiger, Tel.: 06436/609-0

Datenblatt ausstellender Bereich : Ansprechpartner:

Verhalten in Umweltkompartimenten: nicht assimilierbar

12. 12.1. 12.2.

Anlage 7: Technisches Datenblatt Schiefermehl VTS Typ B0.09

SCHIEFER - MEHL

DATENBLATT 2002

2,36 µm

12,09 µm

58,00 µm

Basis:

Schiefermehl B 0,09

1. Kornzusammensetzung:

- Naßsiebung:	< 0,5 mm	100 %
	< 0,25 mm	99,9 %
	< 0,09 mm	87,2 %
	< 0,071 mm	78,0 %
	< 0,063 mm	76,0 %
	< 0,045 mm	66,8 %

Korndurchmesser bei 10 % Durchgang: - Cilas: Korndurchmesser bei 50 % Durchgang: (mittlerer Korndurchmesser) Korndurchmesser bei 90 % Durchgang:

2. Chemische Eigenschaften:

 Glühverlust (1000 °C , 2 h) 	5,43 Masse-%
 ph-Wert (wäßriger Auszug) 	8,7
 Säurebeständigkeit gegenüber 1 %-iger 	
HCL , 24 h bis 20 °C	96,5 Masse- %
- Laugenbeständigkeit gegenüber 1 %-iger	
NaOH, 24 h bei 20 °C	99,2 Masse-%
 wasserlöslicher Anteil 	0,11 Masse-%
- salzsäurelöslicher Anteil (DIN 55920-13)	15,0 Masse-%

3. Physikalische Eigenschaften:

- Trockenrohdichte	2,71 g/cm ³
 Schüttdichte nach DIN 53194 	680 - 700 g/l
 Stampfgewicht nach DIN 53194 	1,13 g/cm ³
- Stampfvolumen nach DIN 53194	0,88 cm ³ /g
- Restfeuchte	< 0,2 % (max.0,5 %)
 Ölzahl nach DIN 53199 	26,7
(g Öl/100 g Mehl)	

4. weitere Eigenschaften

Härte nach Mohs	3 - 4
Farbe	loquitzblau B
Weißgrad (weiß 100 %, schwarz 0 %)	ca. 44 %
Anteil frei SiO ₂ < 0,005 mm	8 - 11 %
Kornform	plattig

Alle Daten sind Richtwerte mit vorkommens-und produktionsbezogenen Toleranzen. Sie dienen nur zur Beschreibung und stellen keine zugesicherten Eigenschaften dar. Dem Benutzer obliegt es, die Tauglichkeit für seinen Verwendungszweck zu prüfen.

Vereinigte Thüringische Schiefergruben GmbH & Co.KG . 07330 Unterloquitz Telefon: (03 67 31) 25 293 Fax: (03 67 31) 25 214

Schiefermehl /	VTS Typ B 0.09 -	Sicherheitsdatenblatt gemäß 91/155/EWG "EG-Sicherheitsdatenblatt"	8. Expositionsbegrenzung und	persönliche Schutzausrüstungen
Datum: 24.11.1	995	Überarbeitet am: 10.03.1998	Zusätzliche Hinweise zur Gestaltu Bestandteile mit arbeitsplatzbezog	ng technischer Anlagen: Staubentwicklung vermeiden. Jenen zu überwachenden Grenzweiten:
 Stoff-/Zube 	sreitungs- und Fir	menbezeichnung	quarzhaltiger Feinstaub. Persönliche Schutzausrüstung:	
Hersteller/Liefe	rant	Vereinigte Thüringische Schiefergruben GmbH & Co. KG Ortsstraße 44 b, D-07330 Unterloquitz	Bei ständiger starker offener S 9. Physikalische und chemisch	taubentwicklung Staubmaske und Schutzbrille empfohlen. ie Eigenschaften
Telefon/Fax Telefon auskun	lftsgebender Berei	(036731) 250 / (036731) 25-214 ch (036731) 25-290	Form / Farbe / Geruch Dictre	feines Mehl / grau / geruchlos c.a. 2.7. ol.mª (r.a. 2.7.koldm² c.a. 2.700 kolmª)
2. Zusammen	setzung / Angab	en zu Bestandteilen	Löslichkeit	in Wasser unlöslich
Reines Naturpn	odukt (Schiefer). (vhne Schaden für Luft, Boden, Wasser.	Schmelzbereich Schüttdichte	> 1.100 °C 0,5 bis 0,8 kg/dm³
3. Mögliche G	Sefahren	Kein Gefahrgut.	10. Stabilität und Reaktivität	<u>Inertes</u> Material. Keine Zersetzungsprodukte.
4. Erste-Hilfe	-Maßnahmen		11. Angaben zur Toxikologie	Nicht toxisch.
Allgemeine Hin	weise	mit warmen Wasser abwaschen		
Nach Hautkont	akt	keine Hautschädigung	12. Angaben zur Ökologie	
Nach Augenkoi	ntakt	mit warmen Wasser ausspülen		
Nach Verschluc	cken	entfällt	Keine Schädigung von Luft, Wass	er und Boden.
Nach Einatmen	-	frische Luft und gut durchlüftete Räume aufsuchen		
Hinweise für de	en Arzt	Material ist meut	13. Hinweise zur Entsorgung	
5. Maßnahme	en zur Bandbekär	Bunyat	Produkt	Unter Beachtung der örtlichen Gegebenheiten einer ge- ordneten Deponie zuführen.
Entfällt, da Mat	erial nicht brennb <i>e</i>	r. Keine Löschmitteleinschränkung bei Umgebungsbrand.	Ungereinigte Verpackungen	Nach Restentleerung getrennt nach Säcken und Folien gewerblichen Verwertern zuführen.
6. Maßnahme	en bei unbeabsich	tigter Freisetzung	H	
Staubentwicklu	na vermeiden. Mai	erial mechanisch aufnehmen.	14. Angaben zum Iransport	Enttallt.
	0		15. Vorschriften	
7. Handhabu	ng und Lagerung	Kein Gefahrgut.		
Handhabung	Staubentwicklung	j vermeiden.	Kennzeichnung nach EG-Richtlini Nationale Vorschriften	en Nicht kennzeichnungspflichtig. Keine
Lagerung	Loses Material in	geschlossenen Silos.		
	Verpacktes Mate	rial in trockenen Räumen.	16. Sonstige Angaben	Keine.

Anlage 8: